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A. Proof for Equation (12)

We prove Equation (12) similarly with Chen et al. [1].
All the terminologies are kept consistent with Section 3.
We first consider the case when momentum 7 = 0 (i.e.,
the parameters of online and target networks are always the
same). By definition, for Vi € [1, H],j € [1, W], the pre-
dictor gy () is expected to minimize:

E, ||lgo(Ri j, AC; ;) — Kmeans(R; ;)|l3], (1)

where r is a random variable representing the feature of a
random view (e.g., data augmentation) of image x. For the
simplicity of analysis, we use the mean square root || - ||
here, which is equivalent to cosine distance after the vectors
are lo-normalized. Then the optimal solution to gy (-) should
satisfy:

optimal
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2

for any pixel of any image, which is equivalent to Equation
(12). Note that, here r denotes a conditional distribution
conditioned on the online feature map R and the offset map
AC, instead of a uniform distribution in Chen et al. [1].
When 7 # 0, the target network is a exponential moving
average of the online network, which also helps estimate the
expectation in Equation (2), as suggested in Chen et al. [1].

B. More Implementation Details
B.1. MultiSiam without K-means

We further implement a MultiSiam without K-means in
Section 4.2 by calculating a per-pixel cosine distance of
2D features with all other modules unchanged to verify
the guidance effect of K-means. Specifically, the consis-
tency loss between the online network’s prediction ) and
the aligned target feature R’ is now defined as:
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without adopting K-means clustering on the target network.
All other modules including the IoU threshold, the feature
alignment and the self-attention remain unchanged.

B.2. MoCo-based MultiSiam

Here we briefly introduce our simple implementation
of MoCo-based MultiSiam with Rol alignment. All the
terminologies are kept consistent with Section 3. Since
MoCo does not adopt a separate predictor, feature align-
ment is now deployed before projectors instead of after as
the BYOL-based MultiSiam does. Specifically, the aligned
online and target feature maps R and R’ are represented as:

R = Rol Align(F, B), “4)
R' = Rol Align(F', B'), (5)

which will be fed into the projectors to get the projected
online and target feature maps G and G’ as:

H W
Gij =Y sim(Rij Riy) go(Riry), (6)

i'=1j'=1

G’ = ge(R). @)

Note that self-attention module is now incorporated into
the online projector. K-means is then performed on G’ to
get the centroid of each pixel, denoted as Kmeans(Gj ;),
which will be considered as the positive sample for the
pixel at the same relative position of the online feature map
(i.e., Gy ;). The final per-pixel contrastive loss £; ; and the
MoCo-based 2D clustering consistency 10ss Lop_ciuster 1S

defined as (for Vi € [1, H],j € [1,W]):

H W
£2D,cluster £ ﬁ Z Z Ei,jv (8)
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where kjj = Kmeans(G; ;) is the positive sample of G ;,
while {k~} are negative samples maintained by a separate



Method PASCAL VOC COCO Mask R-CNN 90k (1x) Cityscapes BDD100K
AP APy, AP | AP APY, AP | AP"F  APZF  APZF | AP AP;, mlOU | mIOU
RandInit | 33.8 602 33.1 | 31.0 495 332 | 285 468 304 | 254 511 653 50.7
Supervised | 53.5 813 588 | 389 596 427 | 354 565 381 | 329 596 746 58.8
InstDist | 552 809 612 | 374 57.6 406 | 341 546 364 | 330 60.1 733 572
SwAV 561 826 627 | 385 604 414 | 354 570 377 | 339 624 730 57.1
MoCo 559 815 626 | 385 589 420 | 351 559 377 |323 593 753 59.7
MoCo-v2 | 57.0 824 636 | 389 594 424 | 355 565 381 |339 608 757 60.0
DetCo 578 826 642 | 395 603 431 | 359 569 386 | 347 632 765 60.9
DenseCL | 587 828 652 | 403 599 443 | 364 570 392 | 343 625 757 59.3
MultiSiam | 57.8  83.0 650 | 40.7 61.7 445 | 370 58.6 39.7 | 349 638 77.2 61.7

Table A1l. Comparisons between methods pre-trained on ImageNet. Although designed for multi-instance circumstances, our proposed
MultiSiam still achieves state-of-the-art performance and demonstrates strong generalization ability to single-centric-object datasets.

Method Mask R-CNN 180k (2x) RetinaNet 90k (1x) | RetinaNet 180k (2x) RetinaNet 12k
AP® APY APYE [ AP™F  APIF APZIF | AP AP;q AP;; | AP AP5y AP;; | AP AP;y APy
Rand Init 36.7 56.7 40.0 | 33.7 53.8 359 | 245 390 257 [322 494 342 | 40 79 3.5
Supervised | 40.6 61.3 444 | 36.8 58.1 395 | 374 565 39.7 |389 585 41.5 |243 40.7 251
MoCo 408 616 447 | 369 584 397 |363 550 390|387 579 415 |202 339 208
MoCo-v2 | 40.9 61.5 447 | 370 58.7 39.8 | 372 562 39.6 393 589 421 |222 369 230
DetCo 415 621 456 | 37.6 592 405 |380 574 407 |398 595 424 |23.6 38.7 24.6
MultiSiam | 42.1 63.2 46.1 | 38.2 60.2 41.1 | 384 579 412 |40.0 59.6 42.8 | 238 398 245

Table A2. Comparisons on COCO objection detection and instance segmentation. All methods are pre-trained on ImageNet for 200
epochs. As we can see, MultiSiam outperforms all self-supervised counterparts in all downstream settings.

Method Mask R-CNN 12k
AP AP AP | AP™F  APZF  APZF

Rand Init 10.7 207 99 10.3 19.3 9.6
Supervised | 28.4 483 295 | 264 452 257
InstDist 242 415 251 | 228 389 237
SwAV 255 462 254 | 248 435 253
MoCo 256 434 266 | 239 408 248
MoCo-v2 | 266 449 27.7 | 248 421 257
DetCo 279 469 293 | 260 442 269
MultiSiam | 30.3 50.6 31.8 | 28.5 47.8 29.8

Table A3. Comparisons on COCO objection detection and in-
stance segmentation by training 12k iterations. Our MultiSiam
exceeds all baseline methods with a larger margin compared to
fine-tuning 90k and 180k iterations.

momentum queue containing features from different im-
ages following DenseCL [6]. 7 is the temperature hyper-
parameter, which is set to be 0.2 by default.

C. Pre-training on ImageNet

Setup. We further pre-train our MultiSiam on the single-
centric-object ImageNet dataset to verify its generalization
ability. All hyper-parameters are kept the same with Waymo
pre-trainings without specific tuning. We pre-train for 200
epochs and report the transfer performance on different
downstream tasks. Note that here we cite the results of
DetCo [8] without using Rand-Augmentation during pre-
training for a fair comparison with other methods.

Downstream tasks. We choose six representative down-
stream tasks to evaluate the features following DetCo [£],
including object detection on Pascal VOC [3], objection de-
tection and instance segmentation on COCO [4], instance
and semantic segmentation on Cityscapes [2] and semantic
segmentation on BDD100K [9].

For VOC object detection, we train a Faster R-CNN (C4-
backbone) on VOC trainval07+12 set for 24k itera-
tions and evaluate on VOC test set. We evaluate COCO
object detection and instance segmentation by fine-tuning
on COCO train2017 set and test on COCO val2017
set. Here we adopt both two-stage Mask R-CNN (FPN-
backbone) and one stage RetinaNet with three training
schedules, including standard 90k (1x), 180k (2x) in [7] and
an extreme 12k-iteration schedule following DetCo for fast
convergence, since it is possible to get competitive results
on COCO even training from scratch but with enough it-
erations. For Cityscapes instance segmentation, we train a
Mask R-CNN (FPN-backbone) for 24k iterations, while we
fine-tune a FCN-16s for 90k iterations on both t rain sets
and evaluate on the corresponding val sets for Cityscapes
and BDD100OK semantic segmentation.

Discussion. As shown in Table A1, A2 and A3, although
originally designed for multi-instance circumstances, our
MultiSiam still achieve state-of-the-art performance on all
downstream benchmarks under different settings after pre-
trained on ImageNet, revealing the generalization ability of



MultiSiam. The improvement is more significant when fine-
tuning for 12k iterations compared with 90k and 180k set-
tings, indicating that MultiSiam can effectively fasten model
convergence. Also the robustness to hyper-parameters will
decrease the deployment difficulty to other domain-specific
circumstances like medical images.

D. More Ablation Studies
D.1. Ablations on Optimization

Minimum crop scale. During data augmentation, we will
first select the scale of the output crop by randomly choos-
ing a percentage of the original image scale between a min-
imum value and 100%, followed by random cropping and
flipping. The results show that it’s more beneficial to use
a smaller minimum value to capture scale-invariance for
downstream visual tasks.

Base learning rate. We find the optimal base learning
rate for downstream dense visual tasks is much larger than
that for image classification in BYOL, which demonstrates
the differences between image-level visual tasks and pixel-
level visual perception problems.

Base momentum. As we can see in Table A4(c), using
a larger base momentum and a more stable target network
will help increase the transfer performance of the learned
visual representations.

D.2. Ablations on Self-attention Module

We verify whether to use the residual connections in
the self-attention mechanism of MultiSiam as the original
Non-local Network [5] in Table A5. Rol alignment works
slightly better with residual connections, while offset align-
ment suffers from significant performance drop. We argue
that using residual connections with offset alignment might
hurt the prediction effectiveness under long range offset cir-
cumstances.

Minimum Base Base mIOU
Crop Scale | Learning Rate | Momentum
(a) Minimum Crop Scale
0.08 0.3 0.99 71.9
0.2 0.3 0.99 71.7
(b) Base Learning Rate
0.08 0.3 0.99 71.9
0.08 1.0 0.99 72.9
(c) Base Momentum
0.2 0.1 0.99 71.6
0.2 0.1 0.996 72.3

Table A4. Ablations on optimization hyper-parameters. (a)
Minimum crop scale; (b) base learning rate; (c) base momentum.
All results are evaluated on Cityscapes val set over three indepen-
dent trials, same as the main paper.

Feature Alignment | Residual Connection | mIOU
Rol 71.2
Rol v 71.4
Offset 71.9
Offset v 70.0

Table AS. Ablations on residual connections in self-attention.
As we can see, residual connections work well with Rol alignment
but bring performance drop for offset alignment.
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