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A. Proof for Equation (12)
We prove Equation (12) similarly with Chen et al. [1].

All the terminologies are kept consistent with Section 3.
We first consider the case when momentum τ = 0 (i.e.,
the parameters of online and target networks are always the
same). By definition, for ∀i ∈ [1, H], j ∈ [1,W ], the pre-
dictor qθ(·) is expected to minimize:

Er

[
||qθ(Ri,j ,∆Ci,j)−Kmeans(R′

i,j)||22
]
, (1)

where r is a random variable representing the feature of a
random view (e.g., data augmentation) of image x. For the
simplicity of analysis, we use the mean square root || · ||22
here, which is equivalent to cosine distance after the vectors
are l2-normalized. Then the optimal solution to qθ(·) should
satisfy:

qoptimal
θ (Ri,j ,∆Ci,j) = Er

[
Kmeans(R′

i,j)|∆Ci,j , Ri,j

]
,

(2)
for any pixel of any image, which is equivalent to Equation
(12). Note that, here r denotes a conditional distribution
conditioned on the online feature map R and the offset map
∆C, instead of a uniform distribution in Chen et al. [1].
When τ ̸= 0, the target network is a exponential moving
average of the online network, which also helps estimate the
expectation in Equation (2), as suggested in Chen et al. [1].

B. More Implementation Details
B.1. MultiSiam without K-means

We further implement a MultiSiam without K-means in
Section 4.2 by calculating a per-pixel cosine distance of
2D features with all other modules unchanged to verify
the guidance effect of K-means. Specifically, the consis-
tency loss between the online network’s prediction Q and
the aligned target feature R′ is now defined as:

L2D wo cluster ≜
1

HW

H∑
i=1

W∑
j=1

−cos(Qi,j , R
′
i,j), (3)

without adopting K-means clustering on the target network.
All other modules including the IoU threshold, the feature
alignment and the self-attention remain unchanged.

B.2. MoCo-based MultiSiam

Here we briefly introduce our simple implementation
of MoCo-based MultiSiam with RoI alignment. All the
terminologies are kept consistent with Section 3. Since
MoCo does not adopt a separate predictor, feature align-
ment is now deployed before projectors instead of after as
the BYOL-based MultiSiam does. Specifically, the aligned
online and target feature maps R and R′ are represented as:

R = RoIAlign(F,B), (4)
R′ = RoIAlign(F ′, B′), (5)

which will be fed into the projectors to get the projected
online and target feature maps G and G′ as:

Gi,j =

H∑
i′=1

W∑
j′=1

sim(Ri,j , Ri′,j′) · gθ(Ri′,j′), (6)

G′ = gξ(R
′). (7)

Note that self-attention module is now incorporated into
the online projector. K-means is then performed on G′ to
get the centroid of each pixel, denoted as Kmeans(G′

i,j),
which will be considered as the positive sample for the
pixel at the same relative position of the online feature map
(i.e., Gi,j). The final per-pixel contrastive loss Li,j and the
MoCo-based 2D clustering consistency loss L2D cluster is
defined as (for ∀i ∈ [1, H], j ∈ [1,W ]):

L2D cluster ≜
1

HW

H∑
i=1

W∑
j=1

Li,j , (8)

Li,j ≜
exp(Gi,j · k+i,j/τ)

exp(Gi,j · k+i,j/τ) + Σk−exp(Gi,j · k−/τ)
, (9)

where k+i,j = Kmeans(G′
i,j) is the positive sample of Gi,j ,

while {k−} are negative samples maintained by a separate



Method PASCAL VOC COCO Mask R-CNN 90k (1x) Cityscapes BDD100K
AP AP50 AP75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 AP AP50 mIOU mIOU

Rand Init 33.8 60.2 33.1 31.0 49.5 33.2 28.5 46.8 30.4 25.4 51.1 65.3 50.7
Supervised 53.5 81.3 58.8 38.9 59.6 42.7 35.4 56.5 38.1 32.9 59.6 74.6 58.8
InstDist 55.2 80.9 61.2 37.4 57.6 40.6 34.1 54.6 36.4 33.0 60.1 73.3 57.2
SwAV 56.1 82.6 62.7 38.5 60.4 41.4 35.4 57.0 37.7 33.9 62.4 73.0 57.1
MoCo 55.9 81.5 62.6 38.5 58.9 42.0 35.1 55.9 37.7 32.3 59.3 75.3 59.7
MoCo-v2 57.0 82.4 63.6 38.9 59.4 42.4 35.5 56.5 38.1 33.9 60.8 75.7 60.0
DetCo 57.8 82.6 64.2 39.5 60.3 43.1 35.9 56.9 38.6 34.7 63.2 76.5 60.9
DenseCL 58.7 82.8 65.2 40.3 59.9 44.3 36.4 57.0 39.2 34.3 62.5 75.7 59.3
MultiSiam 57.8 83.0 65.0 40.7 61.7 44.5 37.0 58.6 39.7 34.9 63.8 77.2 61.7

Table A1. Comparisons between methods pre-trained on ImageNet. Although designed for multi-instance circumstances, our proposed
MultiSiam still achieves state-of-the-art performance and demonstrates strong generalization ability to single-centric-object datasets.

Method Mask R-CNN 180k (2x) RetinaNet 90k (1x) RetinaNet 180k (2x) RetinaNet 12k
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Rand Init 36.7 56.7 40.0 33.7 53.8 35.9 24.5 39.0 25.7 32.2 49.4 34.2 4.0 7.9 3.5
Supervised 40.6 61.3 44.4 36.8 58.1 39.5 37.4 56.5 39.7 38.9 58.5 41.5 24.3 40.7 25.1
MoCo 40.8 61.6 44.7 36.9 58.4 39.7 36.3 55.0 39.0 38.7 57.9 41.5 20.2 33.9 20.8
MoCo-v2 40.9 61.5 44.7 37.0 58.7 39.8 37.2 56.2 39.6 39.3 58.9 42.1 22.2 36.9 23.0
DetCo 41.5 62.1 45.6 37.6 59.2 40.5 38.0 57.4 40.7 39.8 59.5 42.4 23.6 38.7 24.6
MultiSiam 42.1 63.2 46.1 38.2 60.2 41.1 38.4 57.9 41.2 40.0 59.6 42.8 23.8 39.8 24.5

Table A2. Comparisons on COCO objection detection and instance segmentation. All methods are pre-trained on ImageNet for 200
epochs. As we can see, MultiSiam outperforms all self-supervised counterparts in all downstream settings.

Method Mask R-CNN 12k
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init 10.7 20.7 9.9 10.3 19.3 9.6
Supervised 28.4 48.3 29.5 26.4 45.2 25.7
InstDist 24.2 41.5 25.1 22.8 38.9 23.7
SwAV 25.5 46.2 25.4 24.8 43.5 25.3
MoCo 25.6 43.4 26.6 23.9 40.8 24.8
MoCo-v2 26.6 44.9 27.7 24.8 42.1 25.7
DetCo 27.9 46.9 29.3 26.0 44.2 26.9
MultiSiam 30.3 50.6 31.8 28.5 47.8 29.8

Table A3. Comparisons on COCO objection detection and in-
stance segmentation by training 12k iterations. Our MultiSiam
exceeds all baseline methods with a larger margin compared to
fine-tuning 90k and 180k iterations.

momentum queue containing features from different im-
ages following DenseCL [6]. τ is the temperature hyper-
parameter, which is set to be 0.2 by default.

C. Pre-training on ImageNet

Setup. We further pre-train our MultiSiam on the single-
centric-object ImageNet dataset to verify its generalization
ability. All hyper-parameters are kept the same with Waymo
pre-trainings without specific tuning. We pre-train for 200
epochs and report the transfer performance on different
downstream tasks. Note that here we cite the results of
DetCo [8] without using Rand-Augmentation during pre-
training for a fair comparison with other methods.

Downstream tasks. We choose six representative down-
stream tasks to evaluate the features following DetCo [8],
including object detection on Pascal VOC [3], objection de-
tection and instance segmentation on COCO [4], instance
and semantic segmentation on Cityscapes [2] and semantic
segmentation on BDD100K [9].

For VOC object detection, we train a Faster R-CNN (C4-
backbone) on VOC trainval07+12 set for 24k itera-
tions and evaluate on VOC test set. We evaluate COCO
object detection and instance segmentation by fine-tuning
on COCO train2017 set and test on COCO val2017
set. Here we adopt both two-stage Mask R-CNN (FPN-
backbone) and one stage RetinaNet with three training
schedules, including standard 90k (1x), 180k (2x) in [7] and
an extreme 12k-iteration schedule following DetCo for fast
convergence, since it is possible to get competitive results
on COCO even training from scratch but with enough it-
erations. For Cityscapes instance segmentation, we train a
Mask R-CNN (FPN-backbone) for 24k iterations, while we
fine-tune a FCN-16s for 90k iterations on both train sets
and evaluate on the corresponding val sets for Cityscapes
and BDD100K semantic segmentation.

Discussion. As shown in Table A1, A2 and A3, although
originally designed for multi-instance circumstances, our
MultiSiam still achieve state-of-the-art performance on all
downstream benchmarks under different settings after pre-
trained on ImageNet, revealing the generalization ability of



MultiSiam. The improvement is more significant when fine-
tuning for 12k iterations compared with 90k and 180k set-
tings, indicating that MultiSiam can effectively fasten model
convergence. Also the robustness to hyper-parameters will
decrease the deployment difficulty to other domain-specific
circumstances like medical images.

D. More Ablation Studies
D.1. Ablations on Optimization

Minimum crop scale. During data augmentation, we will
first select the scale of the output crop by randomly choos-
ing a percentage of the original image scale between a min-
imum value and 100%, followed by random cropping and
flipping. The results show that it’s more beneficial to use
a smaller minimum value to capture scale-invariance for
downstream visual tasks.

Base learning rate. We find the optimal base learning
rate for downstream dense visual tasks is much larger than
that for image classification in BYOL, which demonstrates
the differences between image-level visual tasks and pixel-
level visual perception problems.

Base momentum. As we can see in Table A4(c), using
a larger base momentum and a more stable target network
will help increase the transfer performance of the learned
visual representations.

D.2. Ablations on Self-attention Module

We verify whether to use the residual connections in
the self-attention mechanism of MultiSiam as the original
Non-local Network [5] in Table A5. RoI alignment works
slightly better with residual connections, while offset align-
ment suffers from significant performance drop. We argue
that using residual connections with offset alignment might
hurt the prediction effectiveness under long range offset cir-
cumstances.

Minimum Base Base mIOUCrop Scale Learning Rate Momentum
(a) Minimum Crop Scale

0.08 0.3 0.99 71.9
0.2 0.3 0.99 71.7

(b) Base Learning Rate
0.08 0.3 0.99 71.9
0.08 1.0 0.99 72.9

(c) Base Momentum
0.2 0.1 0.99 71.6
0.2 0.1 0.996 72.3

Table A4. Ablations on optimization hyper-parameters. (a)
Minimum crop scale; (b) base learning rate; (c) base momentum.
All results are evaluated on Cityscapes val set over three indepen-
dent trials, same as the main paper.

Feature Alignment Residual Connection mIOU
RoI 71.2
RoI ✓ 71.4

Offset 71.9
Offset ✓ 70.0

Table A5. Ablations on residual connections in self-attention.
As we can see, residual connections work well with RoI alignment
but bring performance drop for offset alignment.
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