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1. Occupancy Concept Mapping
The proof of the proposed OCM (cf. Sec. 3.3) and the

analysis of routing process in probabilistic perspective are
given as follows. Let ok,c denote the random variable indi-
cating a concept exists at the 3D location of the kth world
cell (i.e. ok,c = 1) or not (i.e. ok,c = 0), and oij,c denote
the random variable indicating a concept c exists at the 2D
location (i, j) of a view cell. The goal of OCM is to esti-
mate the scene cell sck,c, which represents the posterior of
the existing probability for a concept c at the location of the
kth world cell given the observed images x1:N :

sck,c = p(ok,c = 1|x1:N ). (1)

The log-odds of the concept existing probability in world
space is defined by

logOdd(ok,c) = log
p(ok,c = 1)

p(ok,c = 0)
. (2)

The posterior of the log-odds given an observation can be
computed via Bayes’ theorem:

logOdd(ok,c|x) = log
p(x|ok,c = 1)p(ok,c = 1)/p(x)

p(x|ok,c = 0)p(ok,c = 0)/p(x)

= log
p(x|ok,c = 1)

p(x|ok,c = 0)
Odd(ok,c)

= log
p(x|ok,c = 1)

p(x|ok,c = 0)
+ logOdd(ok,c). (3)

Without any observation, the initial prior of the log-odds for
the concept existing probability is zero:

logOdd(ok,c) = log
p(ok,c = 1)

p(ok,c = 0)
= log

0.5

0.5
= 0. (4)

Let wck,c denote the value of the cth channel for the kth
world cell, which is assumed as the log of likelihood ratio
of a concept:

wck,c = log
p(x|ok,c = 1)

p(x|ok,c = 0)
. (5)

The posterior of log-odds given N observations
x1, x2, ..., xN can be estimated via iterative Bayesian
updating according to Eq. 3 and 4:

logOdd(ok,c|x1, x2, ..., xN )

= (...((logOdd(ok,c) + wc1k,c) + wc2k,c) + ...) + wcNk,c

=

N∑
n=1

wcnk,c, (6)

where n represents the index of different observations. The
scene cell is then calculated by the posterior of log-odds:

logOdd(ok,c|x1:N ) = log
p(ok,c = 1|x1:N )

1− p(ok,c = 1|x1:N )
,

sck,c = p(ok,c = 1|x1:N )

=
exp (logOdd(ok,c|x1:N ))

1 + exp (logOdd(ok,c|x1:N ))

= σ(logOdd(ok,c|x1:N )) = σ(

N∑
n=1

wcnk,c). (7)

We further analyze the meanings of the routing pro-
cess under the mathematical framework of OCM. Similar
to wck,c, let vcij,c denote the value of the cth channel for a
view cell at the 2d location (i, j), which is assumed as the
log of likelihood ratio of concept c:

vcij,c = log
p(x|oij,c = 1)

p(x|oij,c = 0)
. (8)

The routing process transforms the message from the view
cells to the world cells. The information passing to the kth
world cell is defined by the weighted sum of each view cell
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based on the weighting pdistk (i, j):

wck,c =
∑
i,j

pdistk (i, j)vcij,c

=
∑
i,j

pdistk (i, j) log
p(x|oij,c = 1)

p(x|oij,c = 0)

= log
∏
i,j

(
p(x|oij,c = 1)

p(x|oij,c = 0)

)pdist
k (i,j)

= log
∏
i,j

(
p(oij,c = 1|x)p(x)/p(oij,c = 1)

p(oij,c = 0|x)p(x)/p(oij,c = 0)

)pdist
k (i,j)

.(9)

Moreover, the Eq. 5 can be re-written as:

wck,c = log
p(ok,c = 1|x)p(x)/p(ok,c = 1)

p(ok,c = 0|x)p(x)/p(ok,c = 0)
. (10)

Combining Eq. 9 and 10, we observe that the probability
distribution pdistk (i, j) can be the weighting of the weighted
geometry mean for the concept existing probability p(oij,c)
in view space:

p(ok,c) = ∑
i,j pdistk (i,j)

√∏
i,j

p(oij,c)
pdist
k (i,j)

=
∏
i,j

p(oij,c)
pdist
k (i,j)

. (11)

2. Additional Rendering Results
Fig. 2 to Fig. 6 demonstrate more rendering results of the

experiments introduced in Sec. 4.2 for each dataset.

3. Visualization of Routing Process
Fig. 7 demonstrates more routing results of the exper-

iments introduced in Sec. 4.4. Furthermore, to evaluate
whether the proposed STRN can learn the general mapping
between world cells and the continuous view space (as men-
tioned in Sec. 3.2), we trained the model with 16× 16 view
cells and visualized the routing results of view cells for dif-
ferent resolutions by sampling and interpolating the 2D lo-
cation codes. As Fig. 8 shows, the proposed STRN can
learn the routing weights for different resolution of view
cells.

4. Results for Complex Scenes
As mentioned in Sec. 4.7, to evaluate whether the pro-

posed STR-GQN can be applied in more complex scenes,
we trained the proposed model in a discriminative man-
ner based on the “Vase”, “Greek”, “Chair”, and “Material”
datasets. We randomly sampled 32 to 48 frames as the ob-
servation images for training and always utilize 48 frames

as the observation images for testing. Fig. 9 to 12 demon-
strate the experimental results for each dataset.

The proposed STR-GQN achieves good performance on
the “chair” dataset and “vase” dataset. The results show
that the proposed model can reconstruct the complex tex-
ture when the 3D structures are simple. However, the pro-
posed model fails to generate clear results for “material”
and “greek” datasets, which reveals the limitation of our
model. The texture of “material” dataset is simpler than
“vase” dataset while it changes with the view pose. The pro-
posed model fails to reconstruct this kind of texture because
the STR mechanism only considers the view-independent
concepts in 3D space. On the other hand, the texture of
“greek” dataset is simple and view-independent, but its 3D
structure is complex. The proposed model fails to recon-
struct the detailed structure due to the limited number of
world cells.



Figure 1. Rendering results of RRC dataset.

Figure 2. Rendering results of SM7 dataset.



Figure 3. Rendering results of RFC dataset.

Figure 4. Rendering results of RRO dataset.



Figure 5. Rendering results of ShapeNet dataset containing 2 objects.

Figure 6. Rendering results of ShapeNet dataset containing 4 objects.



Figure 7. Visualization of the routing process.



Figure 8. Visualization of the routing process for different resolution of view space.



Figure 9. Rendering results of “Chair” dataset.

Figure 10. Rendering results of “Vase” dataset.



Figure 11. Rendering results of “Material” dataset.

Figure 12. Rendering results of “Greek” dataset.


