Appendices

A. Total Correlation Approximation

The density ratio of the total correlation term is:
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Let 3 denote 7y; - v2. Assume there are equal numbers
of pairs of hy and h,, when y = 1, hy and h,, inter-
dependent, and when y = 0, h, and h,, are independent.
We have
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If we use a classifier/discriminator Dis,,(h) to approxi-
mate the term 7(y = 1 | h), we can write the density ratio
above as:
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Thus, the total correlation can be approximated by:
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B. Implementation

Our framework is implemented by the popular deep
learning framework PyTorch 1.4. The disentangling en-
coder Fy, and decoder D,, contain one and two fully con-
nected (FC) layers, respectively. Each layer is followed a
LeakyReL.U activation function layer and a dropout layer.
The numbers of hidden units of E, and D,, are [ + m)]
and [2048, 2048], where [ and m are the numbers of dimen-
sions of h and h,,. The relation module R, is built with
two FC layers, where the first layer is followed by a ReLU
activation function layer and the second layer is followed
by a Sigmoid activation function layer. The discriminator
is implemented with a single FC layer followed by a Sig-
moid activation function layer. We set the dimension num-
ber [ and m as the same value between 32 and 512. The

hyper-parameters for relation weight A;, TC weight Ao, and
discriminator loss A3 are set between 0.1 and 5. We use
Adam optimizer with 5; = 0.9, 83 = 0.999 and batch size
with 64. For the generative model cVAE, we use a five-layer
MLP for encoder () and its structure can be written as: FC-
LeakyReLU-FC-Dropout-LeakyReL.U-FC for the first part;
a single FC layer for the mean vector output; FC-Dropout-
Softplus for the variance vector output. Another three-layer
MLP for decoder Py can be written as: FC-ReLU-Dropout-
FC-LeakyReLU. We warm up the KL term and the TC
term gradually with increasing epochs. All the experiments
are performed on a Lenovo workstation with two NVIDIA
GeForce GTX 2080 Ti GPUs.

C. Class-wise Analysis

To validate the merit of specific classes in our disen-
tanglement approach, we compare the class-wise perfor-
mance of unseen classes in AWA between the base gen-
erative method, i.e.,, a standard cVAE, and the proposed
SDGZSL. As shown in Figure 8, the top sub-figure is the
confusion matrix of the cVAE while the bottom one is of
the proposed SDGZSL. The rows represent the groundtruth
labels of the target test samples while the columns represent
the predicted labels of the test samples. As unseen classes
are hard to achieve high performance and can be usually
misclassified into seen classes, we take the test samples
from unseen classes to compare between the two settings.
There are 10 unseen classes in AWA dataset, and almost all
these classes in SDGZSL gain higher accuracy than cVAE.
The test samples of unseen classes are usually misclassified
into visually similar classes. Notably, in cVAE we can see
that 41% of test samples from category “horse” are mis-
classified into “’sheep”, 31% from “sheep” to "cow”, 35%
from “rat” to “hamster”. In contrast, our approach shows
the ability to alleviate the problem by reducing the misclas-
sification rate to 9%, 3%, and 35% for categories ’horse”,
”sheep” and “’rat”, respectively. However, some extremely
hard categories, e.g., ’seal” and “bat” can be easily mis-
classified into “walrus” and “’rat”, also fail in our proposed
method. This will be investigated in our future work.

D. Comparison with Traditional Methods

To further demonstrate the superiority of the disentan-
gled semantic-consistent representations, we conduct ex-
periments on traditional embeddings methods. Specifically,
we use the converged encoder E, to process the original
visual features. The learned semantic-consistent represen-
tations h, substitute the original visual features to learn
a compatibility function. We choose the standard embed-
dings method ALE [!] as the base method. Table 2 shows
the performance comparison between our approach and the
representative traditional embedding-based approaches. It
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Figure 8: The comparison between cVAE and the proposed method on confusion matrices of the unseen images being
predicted over all classes. The vertical axis denotes the ground truth and the horizontal axis represents the predictions.

Table 2: Performance comparison in accuracy (%) with traditional methods on four datasets. We report the accuracies of
unseen, seen classes and their harmonic mean, which are denoted as U, S and H. The best results of the harmonic mean are

highlighted in bold.

aPaY AWA CUB FLO

Methods U S H U S H U S H U S H

DAP [19] 48 783 9.0 | 09 847 00 1.7 679 33 - - -
LATEM [34] 01 730 02 | 133 773 200|152 573 240 | 66 476 115
ALE[1] 46 737 87 | 140 818 239|237 628 344|133 616 219
DeVise [9] 35 784 6.7 | 171 747 278|238 53.0 328 | 132 826 228

SJE (2] 1.3 714 26 | 80 739 144|235 592 33.6 - - -

ESZSL [27] 24 701 46 | 59 778 11.0 | 147 565 233 - - -

SAE [17] 04 809 09 1.1 822 22 | 78 540 136 - - -
SDGZSL-ALE 11.1 718 19.3 | 214 88.1 344 | 256 634 365|248 800 379

can be seen from the table that traditional embedding-based
methods perform poorly on GZSL setting, especially on un-
seen classes. These traditional embedding-based methods
are originally proposed for conventional zero-shot learning
setting that only aims to classify test unseen samples over
unseen classes. We argue that the simple embeddings func-
tions cannot draw a clear distinction between the seen class
domain and the unseen class domain so that under GZSL
setting the unseen class samples tend to be misclassified

into seen classes. However, our semantic-consistent rep-
resentations can alleviate this problem. From the perfor-
mance table, training with our semantic-consistent repre-
sentations instead of the original visual features, ALE can
boost the performance by a large margin. The improve-
ment verifies the disentangled semantic-consistent repre-
sentations can help to transfer visual-semantic relationship
from seen classes to unseen classes.



