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1. Description of Data
1.1. Datasets

ILSVRC2012 [13] Figure 1a. A dataset of natural images
of 1000 diverse categories, the most commonly used Im-
agenet dataset, primarily released for ‘Large Scale Visual
Recognition Challenge’. We use the ILSVRC-2012 version
as the original dataset for the classification challenge has
not been modified since. The dataset has a little more than
1.2 million (1,281,167 to be precise) images with each
class consisting of images ranging from 732 to 1300.

CUB-200-2011 Birds [20] Figure 1b. A dataset for
fine-grained classification of 200 different bird species,
an extended version of the CUB-200 dataset. The total
number of images in the dataset is 11,788 with mostly 60
images per class.

FGVC-Aircraft [9] Figure 1c. A dataset of images of
aircrafts spanning 102 model variants with 10,200 total
images and 100 images per class.

FC100 [11] Figure 1d. A dataset curated for few-shot
learning based on the popular CIFAR100 [7] includes 100
classes and 600 32 × 32 color images per class. It offers a
more challenging scenario with lower image resolution.

Omniglot [8] Figure 1e. A dataset of images of 1623
handwritten characters from 50 different alphabets. We
consider each character as a separate class. The total
number of images is 32,460 with 20 examples per class.

Texture [2] Figure 1f. A dataset consists of 5640 images,
organized according to 47 categories inspired from human
perception. There are 120 images for each category.
Image sizes range between 300x300 and 640x640, and the
images contain at least 90% of the surface representing the
category attribute.

Traffic Sign [5] Figure 1g. A dataset of German Traffic

Sign Recognition benchmark consisting of more than
50,000 images across 43 classes.

FGCVx Fungi [14] Figure 1h. A dataset of wild mush-
rooms species which have been spotted and photographed
by the general public in Denmark, containing over 100,000
images across 1,394 classes.

Quick Draw [6] Figure 1i. A dataset of 50 million
drawings across 345 categories. We take the simplified
drawings, which are 28x28 gray-scale bitmaps and aligned
to the center of the drawing’s bounding box. Considering
the size of the full dataset, we randomly sample 1,000
images from each category.

VGG Flower [10] Figure 1j. A dataset consisting of
8189 images among 102 flower categories that commonly
occuring in the United Kingdom. There are between 40 to
258 images in each category.

1.2. Data Preparation

For all the datasets, we resize each image into 256 x
256 then crop 224 × 224 from the center (except quick
draw which is already aligned to the center of the drawing’s
bounding box, so we directly resize quick draw images to
224 × 224).

1.3. Test Protocol

In this work, for all the methods the training process is
performed solely on ILSVRC dataset. For our library based
methods, this is followed by hyperparameter validation on
the CUB birds dataset. After that, each method is tested on
the remaining eight datasets without further tuning.

To be more specific, for the library based methods
we only use the pre-trained (on ILSVRC dataset) models.
While for the meta-learning based methods, we randomly
split ILSVRC into a base (training) set of 900 classes for
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(a) ILSVRC-2012 (b) CUB-200-2011 Birds (c) Aircraft

(d) FC100 (e) Omniglot (f) Texture

(g) Traffic Sign
(h) Fungi

(i) Quick Draw

(j) VGG Flower

Figure 1: Images sampled from the data sets used in our experiments.
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meta-training and a validation set of the remaining 100
classes.

In order to evaluate a few-shot learner on a data set, for
an “n-way m-shot” classification problem, we randomly
select n different classes, and then randomly select m
images from each class for training (equivalent to ‘support’
images in meta-learning literature). We then randomly
select k images for rest of the images from each class
for testing (equivalent to ‘query’ images in meta-learning
literature). We perform this evaluation for n in {5, 20, 40}
and m in {1, 5}.

For the library based methods, the query size k is set to
15 (except FGCVx Fungi dataset). For the meta-learning
based methods, due to GPU memory constraints, for each
class in a task we used 15 query images for 5-way, 10
query images for 10-way, and 5 query images for 40-way
problems, with only exception being the Fungi dataset.
Fungi dataset has several classes with a very small number
of images (6 being the minimum). Hence for Fungi dataset,
we use 5 query images per class for 1-shot and 1 query
image per class for 5-shot problems. Finally, for every
problem, we report the mean of 600 randomly generated
test tasks along with the 95% confidence intervals.

For the FC100 data set, there is a small portion over-
laps with ILSVRC2012 data set but we still think that the
FC100 as a testing set is interesting, as (1) all of the few-
shot learners benefitted from the overlapping classes, and
(2) this shows how the methods work in the case that the
test classes are close to something that the few-shot learner
has seen before.

2. Hyper-parameters for Library-Based
Learners

In order to achieve an “out-of-the-box” few-shot learner
that can be used on any (very small) training set Dfew with-
out additional data or knowledge of the underlying distribu-
tion, an extensive hyper-parameter search is performed on
the validation dataset (CUB birds). The hyper-parameters
that are found to be the best are then applied in the few-
shot training and testing phase for each of our library based
methods. The hyper-parameters we are considering include
learning rate, number of training epochs, L2-regularization
penalty constant, the number of neurons in the MLP hidden
layer, and whether to drop the hidden layer altogether. A
separate hyper-parameter search is used for 5-way, 20-way,
and 40-way 1-shot classification. 5-shot problems are us-
ing the same hyper-parameters as 1-shot ones. Experiments
suggest that dropping the hidden layer did not significantly
help performance, but did occasionally hurt performance
significantly on the validation set; as a result, we always use

a hidden layer. We train all our methods using Adam opti-
mizer. The hyper-parameters details can be found in Table
8.

3. Competitive Methods
For methods that require a pre-trained CNN (FEAT,

Meta-transfer, and SUR), we use the pre-trained ResNet18
pytorch library as the backbone. We follow the hyper-
parameter setting from [16], [21], and [3]. For the FEAT
and Meta-transfer methods, we perform meta-training
on ILSVRC dataset[13] before testing on eight different
datasets. For the SUR method, we follow [3] and build
a multi-domain representation by pre-training multiple
ResNet18 on Meta-Dataset [18] (one per data set). To eval-
uate SUR on data set X , we use feature extractors trained
on the rest of the data sets in {Omniglot, Aircraft, Birds,
Texture, Quickdraw, Flowers, Fungi,and ILSVRC}. Traffic
Sign and FC100 data sets are reserved for testing only.
To be more specific, the meta-training setting are as follows:

Meta-transfer Learning
The base-learner is optimized by batch gradient descent
with the learning rate of 10−2 and gets updated every 50
steps. The meta learner is optimized by Adam optimizer
with an initial learning rate of 10−3, and decaying 50%
every 1,000 iterations until 10−4.

FEAT
The vanilla stochastic gradient descent with Nesterov
acceleration is applied. The initial rate is set to 2 × 10−4

and decreases every 40 steps with a decay rate of 5× 10−4

and momentum of 0.9. The learning rate for the scheduler
is set to 0.5.

SUR
We follow [3] and apply SGD with momentum during op-
timization. The learning rate is adjusted with cosine an-
nealing. The initial learning rate, the maximum number
of training iterations (“Max Iter.”) and annealing frequency
(“Annealing Freq.”) are adjusted individually according to
each data set (Table 1). Data augmentation is also de-
ployed to regularize the training process, which includes
random crops and random color augmentations with a con-
stant weight decay of 7× 10−4.

Baselines
We train the two pre-training based methods, Baseline and
Baseline++ [1] following the hyper-parameters suggested
by the original authors. However, since we train them on
ILSVRC data as opposed to mini-imagenet [12]. During
the training stage, we train 50 epochs with a batch size
of 16. In the paper, the authors have trained 400 epochs
on the base set of mini-imagenet consisting of 64 classes.
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Learning Weight Max Annealing Batch
Rate Decay Iter. Freq. Size

ILSVRC 3× 10−2 7× 10−4 480,000 48,000 64
Omniglot 3× 10−2 7× 10−4 50,000 3,000 16
Aircraft 3× 10−2 7× 10−4 50,000 3,000 8
Birds 3× 10−2 7× 10−4 50,000 3,000 16
Textures 3× 10−2 7× 10−4 50,000 1,500 32
Quick Draw 1× 10−2 7× 10−4 480,000 48,000 64
Fungi 3× 10−2 7× 10−4 480,000 15,000 32
VGG Flower 3× 10−2 7× 10−4 50,000 1,500 8

Table 1: Hyper-parameter settings for SUR individual feature networks on MetaDataset.

Mini-imagenet has 600 images per class, whereas ILSVRC
has an average of around 1,200 images per class. So,
the total number of batches trained in our baselines is
50 × (1000 × 1, 200)/16 = 3, 750, 000, as opposed to
400× (64× 600)/16 = 960, 000 in the original paper.

Metric-Learning Methods and MAML
For the three most popular metric-learning methods, Match-
ingNet [19], ProtoNet [15] and RelationNet [17], again
we followed the implementation and hyper-parameters pro-
vided by [1].

All the metric-learning methods and MAML [4] are
trained using the Adam optimizer with initial learning rate
of 10−3. For MAML, the inner learning rate is kept at 10−2

as suggested by the original authors. And following [1],
we do the following modifications: For MatchingNet, we
use an FCE classification layer without fine-tuning and also
multiply the cosine similarity by a constant scalar. For Re-
lationNet, we replace the L2 norm with a softmax layer to
expedite training. For MAML, we use a first-order approx-
imation in the gradient for memory efficiency. Even then,
we could not train MAML for 40-way in a single GPU due
to memory shortage. Hence, we drop MAML for 40-way
experiments.

During the meta-training stage of all these methods, we
train 150,000 episodes for 5-way 1-shot, 5-way 5-shot, and
20-way 1-shot problems, and 50,000 episodes for all other
problems on the base split of ILSVRC. Here an episode
refers to one meta-learning task that includes training on
the ‘support’ images and testing on the ‘query’ images.
The stopping episode number is chosen based on no signif-
icant increase in validation accuracy. In the original paper,
the authors trained 60,000 episodes for 1-shot and 40,000
episodes for 5-shot tasks. We meticulously observe that
those numbers are too low for certain problems in terms
of validation accuracy. Hence, we allow more episodes.
We select the best accuracy model on the validation set of
ILSVRC for meta-testing on other datasets.

4. Complete Results
Here we conduct additional experiments which are not

reported in our main paper.

Single Library Learners VS. Competitive Methods
Table 2, 3, 4, 5 show the performance comparison of
single library learners and the competitive methods in-
cluding Baseline, Baseline++, MAML, MatchingNet,
ProtoNet, RelationNet, Meta-transfer Learning, and
FEAT. The comparison is conducted on problems of 1-shot
under 5-way, 20-way, and 40-way and 5-shot under 40-way.

Full Library VS. Google BiT Methods
Table 6 shows the performance comparison of the full
library method and the Google BiT methods. The problems
addressed here are 1-shot under 5-way, 20-way, and
40-way. The full library method utilizes a library of nine,
ILSVRC-trained CNNs, while the Google BiT methods
individually use three deep CNNs trained on the full
ImageNet.

Full Library VS. Hard and Soft Ensemble Methods
Table 7 compares the performances of the full library
method and the hard and soft ensemble methods (bagging)
for 1-shot problems under 5-way, 20-way, and 40-way.
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Aircraft FC100 Omniglot Texture Traffic Fungi Quick Draw VGG Flower

Baseline 36.6 ± 0.7 40.3 ± 0.8 65.2 ± 1.0 42.9 ± 0.7 57.6 ± 0.9 35.9 ± 0.9 49.0 ± 0.9 67.9 ± 0.9
Baseline++ 33.9 ± 0.7 39.3 ± 0.7 59.8 ± 0.7 40.8 ± 0.7 58.8 ± 0.8 35.4 ± 0.9 46.6 ± 0.8 58.6 ± 0.9
MAML 26.5 ± 0.6 39.4 ± 0.8 50.7 ± 1.0 38.1 ± 0.9 45.6 ± 0.8 34.8 ± 1.0 46.0 ± 1.0 54.7 ± 0.9
MatchingNet 29.9 ± 0.6 38.2 ± 0.8 51.7 ± 1.0 39.3 ± 0.7 55.2 ± 0.8 38.1 ± 0.9 50.2 ± 0.8 51.8 ± 0.9
ProtoNet 31.8 ± 0.6 40.9 ± 0.8 79.2 ± 0.8 42.0 ± 0.8 54.4 ± 0.9 36.7 ± 0.9 55.8 ± 1.0 59.1 ± 0.9
RelationNet 31.2 ± 0.6 46.3 ± 0.9 69.6 ± 0.9 41.0 ± 0.8 54.6 ± 0.8 36.8 ± 1.0 52.5 ± 0.9 55.5 ± 0.9
Meta-transfer 30.4 ± 0.6 57.6 ± 0.9 78.9 ± 0.8 50.1 ± 0.8 62.3 ± 0.8 45.8 ± 1.0 58.4 ± 0.9 73.2 ± 0.9
FEAT 33.2 ± 0.7 42.1 ± 0.8 69.8 ± 0.9 51.8 ± 0.9 49.0 ± 0.8 46.9 ± 1.0 53.1 ± 0.8 75.3 ± 0.9
SUR 33.5 ± 0.6 42.1 ± 1.0 93.4 ± 0.5 42.8 ± 0.8 45.3 ± 0.9 44.1 ± 1.0 54.3 ± 0.9 72.6 ± 1.0

Worst library- 40.9 ± 0.9 50.8 ± 0.9 77.2 ± 0.8 59.0 ± 0.9 55.5 ± 0.8 53.0 ± 0.9 57.3 ± 0.9 79.7 ± 0.8
based RN18 DN121 RN152 DN169 RN152 DN201 RN101 RN18
Best library- 46.1 ± 1.0 61.2 ± 0.9 86.5 ± 0.6 65.1 ± 0.9 66.6 ± 0.9 56.6 ± 0.9 62.8 ± 0.9 83.2 ± 0.8
based DN161 RN152 DN121 RN101 DN201 DN121 RN18 DN201

Table 2: Comparing competitive methods with the simple library-based learners, on the 5-way, 1-shot problem.

Aircraft FC100 Omniglot Texture Traffic Fungi Quick Draw VGG Flower

Baseline 11.4 ± 0.2 15.4 ± 0.3 38.9 ± 0.6 17.6 ± 0.3 27.8 ± 0.4 13.1 ± 0.3 21.9 ± 0.4 38.8 ± 0.4
Baseline++ 10.1 ± 0.2 15.8 ± 0.3 39.2 ± 0.4 18.1 ± 0.3 31.5 ± 0.3 13.7 ± 0.3 22.5 ± 0.3 33.1 ± 0.4
MAML 7.6 ± 0.1 17.2 ± 0.3 29.1 ± 0.4 14.8 ± 0.2 19.4 ± 0.3 11.5 ± 0.3 19.7 ± 0.3 21.8 ± 0.3
MatchingNet 7.7 ± 0.1 17.0 ± 0.3 44.6 ± 0.5 19.8 ± 0.3 26.2 ± 0.3 16.1 ± 0.4 26.7 ± 0.4 29.9 ± 0.4
ProtoNet 11.5 ± 0.2 20.1 ± 0.3 58.8 ± 0.5 20.0 ± 0.3 29.5 ± 0.4 16.2 ± 0.4 30.7 ± 0.4 40.7 ± 0.4
RelationNet 11.0 ± 0.2 18.7 ± 0.3 51.3 ± 0.5 18.6 ± 0.3 28.5 ± 0.3 15.9 ± 0.4 29.1 ± 0.4 35.5 ± 0.4
Meta-transfer 12.8 ± 0.2 30.9 ± 0.4 58.6 ± 0.5 27.2 ± 0.4 35.8 ± 0.4 23.1 ± 0.4 35.2 ± 0.4 52.0 ± 0.5
FEAT 15.1 ± 0.3 18.9 ± 0.4 51.1 ± 0.6 28.9 ± 0.5 31.7 ± 0.4 25.7 ± 0.4 28.7 ± 0.5 56.5 ± 0.6
SUR 14.2 ± 0.3 19.1 ± 0.4 84.2 ± 0.4 21.0 ± 0.3 26.2 ± 0.3 21.7 ± 0.4 34.2 ± 0.4 57.1 ± 0.5

Worst library- 20.1 ± 0.3 27.8 ± 0.4 56.2 ± 0.5 38.0 ± 0.4 29.7 ± 0.3 31.7 ± 0.4 33.3 ± 0.5 62.4 ± 0.5
based RN101 DN121 RN101 RN18 RN101 RN101 RN101 RN101
Best library- 24.3 ± 0.3 36.4 ± 0.4 69.1 ± 0.4 42.5 ± 0.4 38.5 ± 0.4 33.9 ± 0.5 39.5 ± 0.5 70.0 ± 0.5
based DN161 RN152 DN121 DN152 DN201 DN161 DN201 DN161

Table 3: Comparing competitive methods with the simple library-based learners, on the 20-way, 1-shot problem.

Aircraft FC100 Omniglot Texture Traffic Fungi Quick Draw VGG Flower

Baseline 6.9 ± 0.2 9.7 ± 0.1 27.1 ± 0.4 11.2 ± 0.1 20.0 ± 0.3 8.2 ± 0.2 14.8 ± 0.3 28.7 ± 0.3
Baseline++ 6.1 ± 0.1 10.1 ± 0.1 29.9 ± 0.3 12.1 ± 0.2 23.2 ± 0.2 8.7 ± 0.2 15.9 ± 0.2 24.2 ± 0.3
MatchingNet 5.1 ± 0.1 11.6 ± 0.2 32.5 ± 0.4 15.0 ± 0.2 19.3 ± 0.2 11.0 ± 0.2 19.0 ± 0.3 26.9 ± 0.3
ProtoNet 7.2 ± 0.2 13.8 ± 0.2 47.2 ± 0.4 14.4 ± 0.2 21.6 ± 0.3 11.3 ± 0.2 22.9 ± 0.3 31.0 ± 0.3
RelationNet 6.2 ± 0.2 13.8 ± 0.2 45.2 ± 0.4 11.4 ± 0.2 18.2 ± 0.2 10.7 ± 0.2 21.1 ± 0.3 28.1 ± 0.3
Meta-transfer 7.6 ± 0.2 20.6 ± 0.2 37.5 ± 0.3 19.2 ± 0.2 24.4 ± 0.2 10.2 ± 0.2 22.2 ± 0.2 40.4 ± 0.3
FEAT 10.1 ± 0.2 12.9 ± 0.3 35.7 ± 0.4 21.8 ± 0.3 24.9 ± 0.3 18.0 ± 0.3 19.4 ± 0.3 47.6 ± 0.4
SUR 9.9 ± 0.1 13.3 ± 0.2 78.1 ± 0.3 15.0 ± 0.2 19.7 ± 0.2 15.6 ± 0.3 26.7 ± 0.3 48.8 ± 0.3

Worst library- 14.2 ± 0.2 19.6 ± 0.2 47.3 ± 0.3 28.8 ± 0.2 22.2 ± 0.2 23.7 ± 0.3 26.4 ± 0.3 53.1 ± 0.3
based RN34 RN18 RN152 RN18 RN152 RN34 RN152 RN34
Best library- 17.4 ± 0.2 27.2 ± 0.3 61.6 ± 0.3 33.2 ± 0.3 29.5 ± 0.2 26.8 ± 0.3 31.2 ± 0.3 62.8 ± 0.3
based DN161 RN152 DN201 DN152 DN201 DN161 DN201 DN161

Table 4: Comparing competitive methods with the simple library-based learners, on the 40-way, 1-shot problem.
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Aircraft FC100 Omniglot Texture Traffic Fungi Quick Draw VGG Flower

Baseline 17.0 ± 0.2 29.4 ± 0.3 80.0 ± 0.3 27.1 ± 0.2 49.1 ± 0.3 24.0 ± 0.5 41.5 ± 0.3 68.3 ± 0.3
Baseline++ 12.3 ± 0.2 24.4 ± 0.3 67.0 ± 0.3 25.1 ± 0.3 44.1 ± 0.3 19.7 ± 0.5 35.2 ± 0.3 53.9 ± 0.3
MatchingNet 8.6 ± 0.2 22.1 ± 0.3 59.1 ± 0.4 23.3 ± 0.3 37.1 ± 0.3 19.0 ± 0.5 31.5 ± 0.3 46.7 ± 0.4
ProtoNet 13.8 ± 0.2 28.0 ± 0.3 80.0 ± 0.3 29.6 ± 0.3 39.7 ± 0.3 23.6 ± 0.5 42.6 ± 0.4 61.6 ± 0.3
RelationNet 10.7 ± 0.2 26.1 ± 0.3 77.0 ± 0.3 18.7 ± 0.2 29.6 ± 0.3 18.3 ± 0.5 40.6 ± 0.3 47.0 ± 0.3
Meta-transfer 9.7 ± 0.2 29.9 ± 0.2 48.1 ± 0.3 29.8 ± 0.2 33.3 ± 0.2 12.2 ± 0.3 31.6 ± 0.2 55.4 ± 0.3
FEAT 16.2 ± 0.3 27.1 ± 0.4 58.5 ± 0.4 36.8 ± 0.3 37.3 ± 0.3 32.9 ± 0.6 35.6 ± 0.4 74.0 ± 0.4
SUR 15.5 ± 0.2 32.6 ± 0.3 94.2 ± 0.1 25.8 ± 0.1 37.0 ± 0.2 26.3 ± 0.6 45.0 ± 0.3 69.8 ± 0.3

Worst library- 28.4 ± 0.2 37.3 ± 0.2 79.9 ± 0.3 48.4 ± 0.2 47.2 ± 0.2 46.6 ± 0.3 49.8 ± 0.3 81.4 ± 0.2
based RN34 RN18 RN152 RN18 RN152 RN34 RN152 RN34
Best library- 35.9 ± 0.2 48.2 ± 0.3 89.4 ± 0.2 55.4 ± 0.2 57.5 ± 0.2 52.1 ± 0.3 55.5 ± 0.3 88.9 ± 0.2
based DN161 RN152 DN201 DN161 DN201 DN161 DN201 DN161

Table 5: Comparing competitive methods with the simple library-based learners, on the 40-way, 5-shot problem.

Aircraft FC100 Omniglot Texture Traffic Fungi QDraw Flower

5-way, 1-shot

Full Library 44.9 ± 0.9 60.9 ± 0.9 88.4 ± 0.7 68.4 ± 0.8 66.2 ± 0.9 57.7 ± 1.0 65.4 ± 0.9 86.3 ± 0.8
BiT-ResNet-101-3 42.2 ± 1.0 58.5 ± 0.9 76.2 ± 1.1 63.6 ± 0.9 47.4 ± 0.8 63.7 ± 0.9 54.9 ± 0.9 98.0 ± 0.3
BiT-ResNet-152-4 40.5 ± 0.9 61.0 ± 0.9 78.4 ± 0.9 65.6 ± 0.8 48.4 ± 0.8 62.2 ± 1.0 55.4 ± 0.9 97.9 ± 0.3
BiT-ResNet-50-1 45.0 ± 1.0 61.9 ± 0.9 79.4 ± 0.9 68.5 ± 0.9 56.1 ± 0.8 61.6 ± 1.0 54.0 ± 0.9 98.5 ± 0.2

20-way, 1-shot

Full Library 25.2 ± 0.3 36.8 ± 0.4 76.4 ± 0.4 46.3 ± 0.4 40.0 ± 0.4 37.6 ± 0.5 44.2 ± 0.5 75.5 ± 0.5
BiT-ResNet-101-3 19.9 ± 0.3 34.5 ± 0.4 53.4 ± 0.6 44.2 ± 0.4 24.6 ± 0.3 41.6 ± 0.5 32.0 ± 0.4 95.7 ± 0.2
BiT-ResNet-152-4 18.2 ± 0.3 37.2 ± 0.4 51.0 ± 0.6 44.3 ± 0.4 23.6 ± 0.3 40.3 ± 0.5 29.0 ± 0.4 95.0 ± 0.2
BiT-ResNet-50-1 22.6 ± 0.4 36.1 ± 0.4 58.1 ± 0.5 45.7 ± 0.4 28.3 ± 0.3 39.2 ± 0.4 30.0 ± 0.4 95.4 ± 0.2

40-way, 1-shot

Full Library 18.6 ± 0.2 27.3 ± 0.2 67.7 ± 0.3 37.0 ± 0.3 30.3 ± 0.2 29.3 ± 0.3 34.5 ± 0.3 67.6 ± 0.3
BiT-ResNet-101-3 12.7 ± 0.2 24.5 ± 0.2 19.7 ± 0.4 34.4 ± 0.3 15.9 ± 0.2 30.7 ± 0.3 13.5 ± 0.2 91.9 ± 0.2
BiT-ResNet-152-4 12.4 ± 0.2 26.9 ± 0.2 30.8 ± 0.5 35.8 ± 0.3 16.0 ± 0.2 30.7 ± 0.3 18.7 ± 0.3 91.4 ± 0.2
BiT-ResNet-50-1 15.8 ± 0.2 27.5 ± 0.2 47.6 ± 0.4 37.4 ± 0.3 19.7 ± 0.2 30.6 ± 0.3 21.7 ± 0.2 93.4 ± 0.2

Table 6: Comparing a few-shot learner utilizing the full library of nine ILSVRC2012-trained deep CNNs with the larger
CNNs trained on the full ImageNet.
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Aircraft FC100 Omniglot Texture Traffic Fungi Quick Draw VGG Flower

5-way, 1-shot

Full Library 44.9 ± 0.9 60.9 ± 0.9 88.4 ± 0.7 68.4 ± 0.8 66.2 ± 0.9 57.7 ± 1.0 65.4 ± 0.9 86.3 ± 0.8
Hard Ensemble 45.0 ± 0.9 60.0 ± 0.9 88.4 ± 0.6 67.9 ± 0.9 65.2 ± 0.8 58.1 ± 0.9 64.7 ± 1.0 84.9 ± 0.8
Soft Ensemble 44.2 ± 0.9 61.0 ± 0.9 88.2 ± 0.6 67.4 ± 0.9 63.2 ± 0.8 57.1 ± 1.0 65.2 ± 0.9 86.3 ± 0.7
Best Single 46.1 ± 1.0 61.2 ± 0.9 86.5 ± 0.6 65.1 ± 0.9 66.6 ± 0.9 56.6 ± 0.9 62.8 ± 0.9 83.2 ± 0.8

20-way, 1-shot

Full Library 25.2 ± 0.3 36.8 ± 0.4 76.4 ± 0.4 46.3 ± 0.4 40.0 ± 0.4 37.6 ± 0.5 44.2 ± 0.5 75.5 ± 0.5
Hard Ensemble 23.9 ± 0.3 36.3 ± 0.4 73.4 ± 0.4 45.7 ± 0.4 38.2 ± 0.4 36.4 ± 0.4 42.7 ± 0.4 73.3 ± 0.5
Soft Ensemble 24.2 ± 0.3 36.4 ± 0.4 73.8 ± 0.4 46.3 ± 0.5 37.7 ± 0.4 37.1 ± 0.4 43.4 ± 0.5 74.3 ± 0.5
Best Single 24.3 ± 0.3 36.4 ± 0.4 69.1 ± 0.4 42.5 ± 0.4 38.5 ± 0.4 33.9 ± 0.5 39.5 ± 0.5 70.0 ± 0.5

40-way, 1-shot

Full Library 18.6 ± 0.2 27.3 ± 0.2 67.7 ± 0.3 37.0 ± 0.3 30.3 ± 0.2 29.3 ± 0.3 34.5 ± 0.3 67.6 ± 0.3
Hard Ensemble 17.7 ± 0.2 27.3 ± 0.2 65.8 ± 0.3 36.3 ± 0.3 29.0 ± 0.2 28.7 ± 0.3 33.7 ± 0.3 66.1 ± 0.3
Soft Ensemble 18.1 ± 0.2 27.6 ± 0.3 66.2 ± 0.3 37.0 ± 0.3 29.0 ± 0.2 29.1 ± 0.2 34.1 ± 0.3 67.4 ± 0.3
Best Single 17.4 ± 0.2 27.2 ± 0.3 61.6 ± 0.3 33.2 ± 0.3 29.5 ± 0.2 26.8 ± 0.3 31.2 ± 0.3 62.8 ± 0.3

Table 7: Accuracy obtained using all nine library CNNs as the basis for a few-shot learner.
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Number of Hidden Learning Regularization
Epochs Size Rate Constant

5-way, 1-shot and 5-shot

DenseNet121 200 1024 1× 10−3 0.2
DenseNet161 100 1024 5× 10−4 0.2
DenseNet169 300 1024 5× 10−4 0.5
DenseNet201 100 512 5× 10−4 0.5
ResNet18 200 512 1× 10−3 0.2
ResNet34 100 1024 5× 10−4 0.2
ResNet50 300 2048 5× 10−4 0.1
ResNet101 100 512 1× 10−3 0.1
ResNet152 300 512 5× 10−4 0.1
Full Library 300 1024 5× 10−4 0.1
BiT-ResNet-101-3 300 4096 1× 10−3 0.7
BiT-ResNet-152-4 300 2048 5× 10−4 0.7
BiT-ResNet-50-1 200 2048 5× 10−4 0.5

20-way, 1-shot and 5-shot

DenseNet121 100 1024 5× 10−4 0.2
DenseNet161 100 512 1× 10−3 0.1
DenseNet169 300 512 5× 10−4 0.1
DenseNet201 200 1024 5× 10−4 0.1
ResNet18 200 2048 5× 10−4 0.1
ResNet34 100 1024 5× 10−4 0.1
ResNet50 100 1024 5× 10−4 0.1
ResNet101 200 2048 5× 10−4 0.2
ResNet152 100 512 5× 10−4 0.2
Full Library 100 512 5× 10−4 0.1
BiT-ResNet-101-3 300 2048 5× 10−4 0.5
BiT-ResNet-152-4 300 1024 5× 10−4 0.5
BiT-ResNet-50-1 100 2048 5× 10−4 0.9

40-way, 1-shot and 5-shot

DenseNet121 100 2048 5× 10−4 0.1
DenseNet161 100 512 5× 10−4 0.1
DenseNet169 100 512 1× 10−3 0.2
DenseNet201 100 1024 5× 10−4 0.1
ResNet18 100 512 1× 10−3 0.1
ResNet34 100 2048 5× 10−4 0.2
ResNet50 100 512 5× 10−4 0.1
ResNet101 100 512 5× 10−4 0.1
ResNet152 100 1024 5× 10−4 0.1
Full Library 100 1024 5× 10−4 0.1
BiT-ResNet-101-3 300 512 5× 10−4 0.7
BiT-ResNet-152-4 200 1024 5× 10−4 0.5
BiT-ResNet-50-1 300 1024 5× 10−4 0.5

Table 8: Hyper-parameter settings for different backbones in 5, 20, and 40 ways.
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