Parametric Contrastive Learning
Supplementary Material

A. Proof to Remark 1

For an image X; and its label y;, the expectation number of positive pairs with respect to X; will be:

K,, = q(y;) * (Length(queue) + batchsize x 2 — 1) ~ length(queue) - q(y;), )

q(y;) is the class frequency over the whole dataset. Here the ”a” establishes because batchsize < length(queue) in
training process. Note that we use such approximation just for simplification. Our analysis holds for the precise K. In what
follows, we prove the optimal values for supervised contrastive loss.

Suppose training samples are i.i.d. To minimize the supervised contrastive loss for sample X, according to Eq. (3), we
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For obtaining its optimal solution, we define the Lagrange multiplier form of £; as:
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where ) is the Lagrange multiplier. The first order conditions of Eq. (10) w.r.t. A and pj can be written as follows:
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From Eq. (11), the optimal solution for p; will be . Note that p/,. € [0, 1], with a specific p7,,,,,, the minimal loss
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Thus, when pf,,, = 1.0, £; achieves minimum with the optimal value p;” = 7 which is exactly the probability that
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two samples of the same class are a true positive pair.



B. Proof to Remark 2

For the image X; and its label y;, Eq. (9) still establishes for our parametric contrastive loss. To minimize the parametric
contrastive loss for sample X;, according to Eq. (4), we similarly rewrite:
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For obtaining its optimal solution, we define the Lagrange multiplier form of £; as:
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where ) is the Lagrange multiplier. The first order conditions of Eq. (15) w.r.t. A, pI and pf can be written as follows:
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From Eq. (16), the optimal solution for p;” and p will be respectively. Note that p,,, € [0, 1],

with a specific p{,,,,,, the minimal loss value of £; is:
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Thus, when pf,,, = 1.0, £; achieves minimum with the optimal value p;” = Trak.’ which is the probability that
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two samples of the same class are a true positive pair, and the optimal value p; = Trak. which is the probability that a

Ly,

sample is closest to its corresponding center ¢y, among C.



C. Gradient Derivation

In Section 3.4, we analyze PaCo loss under balanced setting, taking full ImageNet as an example. With P, increases
from 0 to 0.71, the intensity of supervised contrastive loss will enlarge. Here we show that more samples will be pulled
together with their corresponding centers when P, increases from 0 to 0.71 from the perspective of gradient derivation.
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It is worthy to note that when p,, € (0,0.71), we have

8Ck

— <0, yi = k.

19)

Eqgs. (18) and (19) mean that as P,,, increases in training process, the probability that a sample is closest to its corresponding
center will increase and the probability that a sample is closest to other centers will decrease. Thus, more and more samples
will be pulled together with their right centers.

D. More Experimental Results on Many-shot, Medium-shot, and Few-shot.
Table 9: Comprehensive results on ImageNet-LT with different backbone networks (ResNet-50, ResNeXt-50 & ResNeXt-

101). Models are trained with RandAugment in 400 epochs. Inference time is calculated with a batch of 64 images on Nvidia
GeForce 2080Ti GPU, Pytorchl.5, Python3.6.

Backbone Method Inference time (ms) Many Medium Few All
T-normalize 8.3 65.0 52.2 323 545
ResNet-50 Balanced Softmax 8.3 66.7 52.9 33.0 55.0
PaCo 8.3 65.0 55.7 382 57.0
T-normalize 13.1 66.4 53.4 38.2 56.0
ResNeXt-50 Balanced Softmax 13.1 67.7 53.8 342 56.2
PaCo 13.1 67.5 56.9 36.7 58.2
T-normalize 25.0 69.0 55.1 36.9 579
ResNeXt-101  Balanced Softmax 25.0 69.2 55.8 36.3 58.0
PaCo 25.0 68.2 58.7 41.0 60.0

Table 10: Comprehensive results on ImageNet-LT with RIDE. Models are trained with RandAugment in 400 epochs. Infer-
ence time is calculated with a batch of 64 images on Nvidia GeForce 2080Ti GPU, Pytorch1.5, Python3.6.

Backbone Method Inference time (ms) Many Medium Few All
1 expert 8.2 64.8 49.8 29.6 52.8
RIDEResNet 2 experts 12.0 67.7 535 31,5 56.0
3 experts 15.3 69.0 54.7 325 57.0
1 expert 13.0 67.2 49.0 28.1 532
RIDEResNeXt 2 experts 19.0 70.4 52.6 30.3 564

3 experts 26.0 71.8 53.9 320 57.8




Table 11: Comprehensive results on iNaturalist 2018 with ResNet-50 and ResNet-152. frepresents the models are trained
without RandAugment. Inference time is calculated with a batch of 64 images on Nvidia GeForce 2080Ti GPU, Pytorchl.5,
Python3.6.

Backbone Method Inference time (ms) Many Medium Few All
T-normalize 8.3 74.1 72.1 704 715
ResNet-50 Balanced Softmax 8.3 72.3 72.6 717 718
PaCo 8.3 70.3 73.2 73.6 732
Balanced Softmax 8.3 72.5 72.3 714 T71.7
ResNet-30 7 p, o 8.3 695 734 730 730
ResNet-152  PaCo 20.1 75.0 75.5 747 752

Table 12: Comprehensive results on iNaturalist 2018 with RIDE. Models are trained with RandAugment in 400 epochs
without knowledge distillation. Inference time is calculated with a batch of 64 images on Nvidia GeForce 2080Ti GPU,
Pytorch1.5, Python3.6.

Backbone Method  Inference time (ms) Many Medium Few All

1 expert 8.2 560 663 660 652
2 experts 12.0 622 705 700 69.5
RIDEResNet 5 s perts 15.3 665 721 715 713

Table 13: Comparison with re-weighting baselines on ImageNet-LT with ResNet-50. The re-weighting strategy is applied to
the supervised contrastive loss. Models are all trained without RandAugment.

Method Top-1 Accuracy
CE 48.4
multi-task (CE+Re-weighting) 49.0
multi-task (CE+Blance Softmax) 48.6
PaCo 51.0

E. Implementation details for Table 1

We train models with cross-entropy, parametric contrastive loss 400 epochs without RandAugment respectively. For
supervised contrastive loss, following the original paper, we firstly train the model 400 epochs. Then we fix the backbone
and train a linear classifier 400 epochs.

F. Ablation Study

Re-weighting in contrastive learning without center learning rebalance Re-weighting is a classical method for dealing
with imbalanced data. Here we directly apply the re-weighting method of Cui et al. [16] in contrastive learning to compare
with PaCo. Moreover, Balanced softmax [38], as one state-of-the-art method for traditional cross-entropy in long-tailed
recognition, is also applied to contrastive learning rebalance. The experimental results are summarized in Table 13. It is
obvious PaCo significantly surpasses the two baselines.

Rebalance in center learning PaCo balances the contrastive learning (for moderating contrast among samples). However
the center learning also needs to be balanced, which has been explored in [1, 25, 15, 20, 8, 41, 38, 28, 49, 14, 46, 18].
To compare with state-of-the-art methods in long-tailed recognition, we incorporate Balanced Softmax [38] into the center



Table 14: Comparison with re-weighting baselines that perform center learning rebalance on ImageNet-LT with ResNeXt-50.
Models are all trained with RangAugment in 400 epochs.

Method loss weight  Top-1 Accuracy
multi-task (Balanced Softmax+Re-weighting) 0.05 57.0
multi-task (Balanced Softmax+Re-weighting) 0.10 57.1
multi-task (Balanced Softmax +Re-weighting) 0.20 57.1
multi-task (Balanced Softmax+Re-weighting) 0.30 57.0
multi-task (Balanced Softmax+Re-weighting) 0.50 57.2
multi-task (Balanced Softmax+Re-weighting) 0.80 57.2
multi-task (Balanced Softmax+Re-weighting) 1.00 56.9
PaCo - 58.2

learning. As shown in Table 14, after rebalance in center learning, PaCo boosts performance to 58.2%, surpassing baselines
with a large margin.



