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This supplementary material contains further details on
GRAVICAP. We also provide a supplementary video with
further analysis of our method, in-the-wild 3D reconstruc-
tions and qualitative comparisons with other methods.

1. In-the-Wild Results
To verify the accuracy of visual metrology achievable by

our method, we test it on several real-world scenarios where
the distance references are available.

Figure 1: Shot put sequence

Professional Shotput Throw: A professional shot put
thrower can throw in the range of 20 meters. The image in
Fig. 1 is a reference to a throw by the world record holder
Ryan Crouser1. Since the person is extremely blurred in the
clip, we test our method with only object-related constraint
Eb, while ensuring that the magnitude of gravity vector is
9.81m/s2. Our method estimates the throw to be 18.557
m long. Further, we estimate the maximum point of the ob-
ject’s trajectory to be 5.46m. Finally, the estimated gravity
direction indicates an upward tilt of 13◦ of the camera.
Basketball Throw: We measure the final position of the
ball in the trajectory of the throw depicted in Fig. 2. We note
the absolute y-position of the ball when it touches the hoop
and compare it with the absolute y-position of the feet (as
estimated by VNect). The difference between the two gives
us an estimate of the height of the hoop. The trajectory
estimates show a height of 3.03 m, which is close to the
actual height of the hoop (3.05m).

2. Noise Sensitivity Analysis
To test the sensitivity of GRAVICAP to noise, we perform

a sensitivity analysis and summarise the results in Table 1.
1https://www.youtube.com/watch?v=TZANFlvsXv4

Figure 2: Basketball throw sequence

GT σ = 10 σ = 30 σ = 50 σ = 100
Pose, 6 DoF 11.7 23.2 39.9 88.3 227.2
Pose, 7 DoF 8.9 13.4 31.1 69.8 224
Pose, 10 DoF 26.3 60.87 126.5 150.4 225.0
Object 12.4 76.3 134.4 155.8 >400

Table 1: Comparing the effect of adding Gaussian noise to
the ground-truth 3D poses and 2D object trajectories on root
translation predictions. The unit of σ is mm for poses and
pixels for 2D object trajectories.

As expected, the performance is affected by strong 2D ob-
ject trajectory perturbations, as high σ, i.e., the standard de-
viation of Gaussian noise, disrupts its parabolic nature.

3. Detection of Trajectory Breaks

To detect an episode switch in multi-episode sequences,
we traverse the 2D trajectory with a sliding window of five
frames. During each slide, we measure the position differ-
ence between the positions of the objects in adjacent frames.
For a switch to have occurred, the direction of position dif-
ferences of the first half must be opposite to that of the
second half. This, however, is not sufficient for detecting
a switch, as the same happens when the object reaches its
peak. To confirm a switch, we measure the change in mag-
nitude of velocity during the inversion. We set a threshold
of 10 pixels per frame to confirm the episode switch.
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https://www.youtube.com/watch?v=TZANFlvsXv4


4. Handling Multi-Episodes and Two Persons
Multi-Episodes: Whenever we have a multi-episode se-
quence, we perform joint optimisation on all the episodes.
This leads to coherent reconstruction in the sense that the
trajectory is continuous and jitter-free. For this, we impose
the continuity constraint, Eco, that ensures that the last posi-
tion of the previous episode is the same as the first position
of the current episode. Specifically, if i = 2, 3, . . . refers to
an episode in a multi-episode sequence, then
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where T is the number of frames in the ith episode.
Two Persons: For the case with two persons, while the pose
projection constraint remains the same (only this time, ap-
plied to multiple poses), the contact term needs to accom-
modate information about which person the object is in con-
tact with:
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In this equation, P c,δ
t indicates the 3D position of the joint

c of the person δ (|δ| is the number of people in the scene)
at time of contact t.

Figure 3: Dataset structure tree

5. Dataset Structure
Our dataset consists of nine activity sequences (eight

single-person and one with two persons) performed by four
subjects. For each sequence, we have two-three multi-
episodes involving one or more episodes in succession.
We provide annotations and images for up to three cam-
era views. The annotations include the 2D and 3D human

poses, 2D and 3D object trajectories, the camera calibration
parameters and point-of-contact information (frame num-
bers and joints which are closest to the body at the time of
contact). The images are of size 1200x877 px. The struc-
ture of the dataset is demonstrated in Fig. 3.
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