
Manifold Matching via Deep Metric Learning for Generative Modeling –
Supplementary Material

Mengyu Dai*

Microsoft
mendai@microsoft.com

Haibin Hang*

University of Delaware
haibin@udel.edu

Given any space X associated with a probability mea-

sure μ s.t. supp[μ] = X and p ≥ 1, then for any function

f : X → R we denote its Lp norm as

‖f‖p :=

(∫
X

|f(x)|pdμ(x)
)1/p

.

Then we have the following properties:

Lemma 0.1. Denote ‖f‖∞ := supx∈X f(x), then

1. If p ≤ q, then ‖f‖p ≤ ‖f‖q;

2. limp→∞ ‖f‖p = ‖f‖∞.

Proof. Let r = q/p and s be such that 1/r + 1/s = 1. Let

a(x) = |f(x)|p and b(x) ≡ 1, then by Holder’s inequality,

we have

‖ab‖1 ≤ ‖a‖r‖b‖s
or

∫
x∈X

|f(x)|pdμ(x) ≤
(∫

x∈X

|f(x)|p· qp dμ(x)
)p/q

.

Now taking the p-th root on both sides we obtain ‖f‖p ≤
‖f‖q .

It is easy to see ‖f‖p ≤ ‖f‖∞ for any p > 1. Now

we choose ∀ε > 0 with ε < ‖f‖∞ and let Xε := {x ∈
X|f(x) ≥ ‖f‖∞ − ε}, then

(∫
x∈X

|f(x)|pdμ(x)
)1/p

≥
(∫

Xε

(‖f‖∞ − ε)pdμ(x)

)1/p

=(‖f‖∞ − ε)μ(Xε)
1/p

When p → ∞ we have limp→∞ ‖f‖p ≥ ‖f‖∞ − ε. Since

ε is arbitrary we have limp→∞ ‖f‖p ≥ ‖f‖∞.

*Equal contributions.

1. Properties of geometric descriptors
Given metric measure space X = (X, d, μ), intuitively,

the Fréchet mean set σ(X) represents the center of X with

respect to metric d. Particularly,

Lemma 1.1. The Fréchet mean of measure μ with respect
to dE coincides with the mean μ :=

∫
RD ydμ(y).

Proof. Suppose that elements in R
D are represented as col-

umn vectors. Then σ(RD, d, μ) equals the set of minimizers

of

F (x) =

∫
RD

(y − x)T (y − x)dμ(y).

Since ∂F
∂x = −2

∫
RD ydμ(y) + 2x, let ∂F

∂x = 0 we have

single minimizer of F (x) to be
∫
RD ydμ(y) = μ.

When the underlying metric d is not the Euclidean met-

ric, the Fréchet mean provides a better option of centroid.

Let x1, x2, · · · , xk, · · · be a sequence of independent

identically distributed points sampled from μ. Let μk =
1
kΣ

k
i=1δxi denote the empirical measure. We can estimate

the Fréchet mean of (X, d, μ) by a set of random samples:

Proposition 1.2. σ(X) = limk→∞ σ(X, d, μk).

Proof. Since the empirical measure μk weakly converges

to μ, the result following by the definition of weak conver-

gence.

The following lemma explains its geometric meaning of

p-diameters:

Lemma 1.3. For any metric measure space X := (X, d, μ)
with supp[μ] = X ,

1. diamp(X) ≤ diamq(X) for any p ≤ q;

2. limp→∞ diamp(X) = sup
x,x′∈X

d(x, x′).

Proof. It follows directly from Lemma 0.1

Similarly, we can estimate the p-diameter of a metric

measure space X := (X, d, μ) by a set of random samples:

1

Proposition 1.4.

diamp(X) = lim
k→∞

diamp(X, d, μk).

Proof. Since the empirical measure μk weakly converges

to μ, the result following by the definition of weak conver-

gence.

Proposition 1.5. Given a metric measure space X :=
(X, d, μ) and map g : X → R

n. If d = g∗dE , then

σ(X) = g−1(g∗μ).

Proof. By definition, σ(X) is the set of minimizers of func-

tion

F (x) : =

∫
X

(g∗dE)2(x, y)dμ(y)

=

∫
X

d2E(g(x), g(y))dμ(y)

=

∫
Rn

d2E(g(x), z)d(g∗μ)(z).

It is easy to see that x0 is a minimizer of F (x) iff. g(x0)
is a minimizer of G(w) :=

∫
Rn d2E(w, z)d(g∗μ)(z). By

Lemma 3.4, g∗μ = argminG(w), hence we have σ(X) =
argminF (x) = g−1(g∗μ).

Proof of Proposition 3.10. It follows directly from Propo-

sition 1.5

2. Network Architectures

For unconditional image generation task, we used a

ResNet data generator and a deep convolutional net metric

generator:

fθ: convt(128) → upres(128) → upres(128) → upres(128)

→ upres(128) → bn → conv(128) → sig;

gw: conv(32) → leaky-relu(0.2) → conv(64) → leaky-

relu(0.2) → conv(128) → leaky-relu(0.2) → conv(256) →
leaky-relu(0.2) → conv(512) → leaky-relu(0.2) → maxpool

→ dense(10).

For super-resolution task, the architecture of Triplet em-

bedding network is presented as below:

gw: (conv(x→2x, x0=32) → prelu → maxpool) * 7 →
dense(256) → prelu → dense(256) → prelu → dense(32),

where conv, convt, upres, bn, relu, leaky-

relu, prelu, maxpool, dense and sig refer to

nn.Conv2d, nn.ConvTranspose2d, up-ResidualBlock,

nn.BatchNorm2d, nn.ReLU, nn.LeakyReLU, nn.PReLu,

nn.MaxPool2d, nn.Linear and nn.Sigmoid layers in Pytorch

framework respectively.

3. More Evaluation Details
Perception-Based Evaluations in SISR: we adopted the

function niqe in Matlab for computing NIQE scores, and

python package lpips for computing LPIPS.

FID Evaluation: we used 50000 randomly generated

samples comparing against 50000 random samples from

real data sets for testing. Features were extracted from the

pool3 layer of a pre-trained Inception network. FID was

computed over 10 bootstrap resamplings.

