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Given any space X associated with a probability mea-
sure p s.t. supp[u] = X and p > 1, then for any function
f: X — R we denote its L? norm as

1= (/. If(x)”du(:v)>l/p-

Then we have the following properties:

Lemma 0.1. Denote || f||oc := sup,cx f(x), then
L Ifp < q then | fllp < |If

2. limp o0 [ fllp = [1£loo-

Proof. Letr = q/p and s be such that 1/r + 1/s = 1. Let
a(x) = |f(z)[? and b(z) = 1, then by Holder’s inequality,
we have

"

llabllx < llall-[[b]ls

or

/z L |f(2)[Pdp(z) < ( /I N | f(x)p,gdﬂ(x)y/q.

Now taking the p-th root on both sides we obtain || f||, <

[1£llq-
It is easy to see || f|l, < ||f|lc for any p > 1. Now
we choose Ve > 0 with € < || f]|« and let X, := {z €

X|[f(x) > || flloc — €}, then

(/IGX f(m)|pdu(x))l/p
- </XE(||f||oo — E)pdu(x)> 1/p

=(|floc — )u(Xe)"”

When p — oo we have lim,_, || f|l, > || f]l — €. Since
¢ is arbitrary we have lim,_.oo || fllp > || f]lco- O
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1. Properties of geometric descriptors

Given metric measure space X = (X, d, i), intuitively,
the Fréchet mean set o (X') represents the center of X' with
respect to metric d. Particularly,

Lemma 1.1. The Fréchet mean of measure pu with respect
to dp coincides with the mean i := fRD ydp(y).

Proof. Suppose that elements in R” are represented as col-
umn vectors. Then o(RP, d, 11) equals the set of minimizers
of

F(z) = /RD (y—2)"(y — x)du(y).

Since £ = —2 [L, ydu(y) + 2z, let £ = 0 we have
single minimizer of F'(x) to be [, ydu(y) = . O

When the underlying metric d is not the Euclidean met-
ric, the Fréchet mean provides a better option of centroid.

Let x1,25,--- ,x,--- be a sequence of independent
identically distributed points sampled from p. Let pp =
%Eleéxi denote the empirical measure. We can estimate
the Fréchet mean of (X, d, i) by a set of random samples:

Proposition 1.2. o(X) = limy_,o 0(X, d, pg).

Proof. Since the empirical measure pj, weakly converges
to p, the result following by the definition of weak conver-
gence. O

The following lemma explains its geometric meaning of
p-diameters:

Lemma 1.3. For any metric measure space X := (X, d, i)
with supp[u] = X,

1. diam,(X) < diamy(X) for any p < g;

2. limp_, o diam,(X) = sup d(z,2’).
z,x'eX

Proof. It follows directly from Lemma 0.1 O

Similarly, we can estimate the p-diameter of a metric
measure space X := (X, d, 1) by a set of random samples:



Proposition 1.4.

diam, (X) = klim diam, (X, d, pu).

Proof. Since the empirical measure j;, weakly converges
to p, the result following by the definition of weak conver-
gence. O

Proposition 1.5. Given a metric measure space X :=
(X,d, ) andmap g : X — R"™. Ifd = g*dg, then

o(X) =g~ (@h).

Proof. By definition, o (X) is the set of minimizers of func-
tion

F(z): = /X (g7 )2 (z, y)du(y)
- /X @2 (g(x), 9(v))du(y)

= [ di(g(x), 2)d(g.p)(2).
R™

It is easy to see that xg is a minimizer of F'(x) iff. g(xo)
is a minimizer of G(w) := [, di(w, z)d(g«p)(z). By
Lemma 3.4, g, i = argmin G(w), hence we have o(X) =
argmin F(x) = g~ (gap1). O

Proof of Proposition 3.10. 1t follows directly from Propo-
sition 1.5 O

2. Network Architectures

For unconditional image generation task, we used a

ResNet data generator and a deep convolutional net metric
generator:
fo: convt(128) — upres(128) — upres(128) — upres(128)
— upres(128) — bn — conv(128) — sig;
Gw: conv(32) — leaky-relu(0.2) — conv(64) — leaky-
relu(0.2) — conv(128) — leaky-relu(0.2) — conv(256) —
leaky-relu(0.2) — conv(512) — leaky-relu(0.2) — maxpool
— dense(10).

For super-resolution task, the architecture of Triplet em-
bedding network is presented as below:

Guw: (conv(x—2x, x9=32) — prelu — maxpool) * 7 —
dense(256) — prelu — dense(256) — prelu — dense(32),
where conv, convt, wupres, bn, relu, leaky-
relu, prelu, maxpool, dense and sig refer to
nn.Conv2d, nn.ConvTranspose2d, up-ResidualBlock,
nn.BatchNorm2d, nn.ReLU, nn.LeakyReLU, nn.PReLu,
nn.MaxPool2d, nn.Linear and nn.Sigmoid layers in Pytorch
framework respectively.

3. More Evaluation Details

Perception-Based Evaluations in SISR: we adopted the
function nige in Matlab for computing NIQE scores, and
python package [pips for computing LPIPS.

FID Evaluation: we used 50000 randomly generated
samples comparing against 50000 random samples from
real data sets for testing. Features were extracted from the
pool3 layer of a pre-trained Inception network. FID was
computed over 10 bootstrap resamplings.



