Vector Neurons: A General Framework for SO(3)-Equivariant Networks

(Supplementary Material)

7. Discussions

In this section, we discuss some extensions, alternatives,
and explanations to the VN layers in Section 3.

7.1. Non-linearity

features q

]
]

]
]
learnable

— nonlinearities
directions k

Figure 7: A detached non-linear layer without built-in linear
layer.

Linear and non-linear layers — Fig. 7. The VN-ReLU de-
fined in Section 3.2 already consists of a built-in linear layer
g = WYV (5) and the the non-linearity is applied to this
learned feature q. An alternative to this is to construct lin-
ear and non-linear layers separately, where the non-linearity
is directly applied to each input vector channel v € V by

if (v, k) >0

v
v = { & 1 ! (24)
v — <v, W> el otherwise,

Detaching the linear layer from non-linearity allows more
flexibility in constructing neural networks and, in practice,
gives better results in some cases. However, this also dou-
bles the network depth and can lead to longer training time
compared to the entangled linear-ReL.U layer in (6). Exper-
imental comparisons will be shown in Section 8.2.

Other non-linearities. Though we only showed how to
define VN-ReLU in Section 3.2, a rich library of equiv-
ariant non-linearities can be defined in this manner using
the input-dependent direction vector k. An immediate ex-
tension is VN-LeakyReLU, where instead of clipping g to
zero we contract it by a factor o € (0, 1). In the manner of
the detached VN-ReL.U in (24), the VN-LeakyReLU can be
easily expressed as:

JreayreLu(Via) = aV + (1 — a) freLu(V). (25)

An entangled layer of VN-Linear and VN-LeakyReLU can
also be defined analogous to (6). More generally, given an
arbitrary non-linear scalar function h : R — R, we can

incorporate it into our VN non-linearity framework by ap-
plying it to | along the k direction, namely,

,_ hllgylD)
gyl

q)+q.. (26)

7.2. Local Pooling

The VN-MAX pooling in Section 3.3 is defined across an
entire pointcloud V € RV*E*3 but we can also aggregate
information locally via local pooling.

In the primal space. For any point x € X with feature
V € V we consider its K nearest neighbours {x;}X_, in
the primal space and we denote by V}, € V the correspond-
ing feature of xj. Similar to global pooling (9), local pool-
ing (in the primal space) is given by:

Faax ({Vihizh) e] = Vi [d] 27)
where k*(c) = arglznax (Wi Vilc], Vilc]). (28)

Feature space locality. As in DGCNN [38], we can also
query the K nearest neighbours {V}, }X_, of feature V,, € V
in the feature space R *? directly, followed by local pool-
ing (in the feature space) with exactly the same formulation
as (28).

7.3. Batch Normalization

In VN-BatchNorm (10), for each input vector-list fea-
ture V3, all entries in its per-channel 2-norm IV, are non-
negative, but after normalizing the distributions, the output
“2-norm” N} can have negative entries. Geometrically, a
negative entry 2/, € IN] means the orientation of its corre-
sponding vector channel is flipped, that is, v, € V/ is in the
opposite direction of v. € V.

To avoid the negative 2-norms, an alternative is to take
logarithms on all entries of [N}, and then apply the standard
BatchNorm to log(IN,). So the VN batch normalization
becomes:

N, = ElementWiseNorm(V;) € RV*1  (29)

{N;}2, = BatchNorm ({log(IN})}.-;) (30)
i exp(IV|c])
‘/b[c]—‘/b[C]T[Z]a (D)

where log and exp act element-wise. However, taking log
and exp brings a lot of instability and in practice can cause
gradient explosion. Also, logarithms cannot be computed
for vectors with zero 2-norms.



Method | I/T  I/z 1/SO(3)

PointNet 90.7 23.1 7.9

DGCNN 929 372 16.6
VN-PointNet | 77.2 77.2 77.2
VN-DGCNN | 90.0 90.0 90.0

Table 4: Test classification accuracy (%) on the Model-
Net40 dataset [41] with training on aligned data. I stands
for no-rotations.

Method | I/I 1/ 1/SO(3)

PointNet 78.7 36.7 30.3
DGCNN 852 438 36.1
VN-PointNet | 73.0 73.0 73.0
VN-DGCNN | 81.5 81.5 81.5

Table 5: ShapeNet part segmentation results (mloU). Train-
ing is done on aligned data without rotation augmentation.

Non-lin | z/z z/SO(3) SO(3)/SO(3)
VN-PointNet
Built-in | 77.5 77.5 77.2
Detached | 78.2 78.1 76.8
VN-DGCNN
Built-in | 89.5 89.5 90.2
Detached | 90.8 90.7 90.2

Table 6: Non-linearity — We compare the performances of
entangled linear-ReL.U (or linear-LeakyReLU) layers in (6)
with 2-tuples of a linear layer plus a separate non-linearity
in (24). “Built-in” stands for non-linearities with built-in
linear transformations, while “detached” stands for tuples of
detached linear and non-linear layers in (24). In most cases,
with either the VN-PointNet or the VN-DGCNN backbone,
disentangling linear and non-linear layers leads to slightly
better results. But this is also at the cost of a doubled net-
work depth and a longer training time (roughly > 1.5 times
to the entangled versions).

8. Additional Experiments
8.1. Training on Aligned Data

In Section 5, we adopt the three train/test settings z/z,
z/S0(3), SO(3)/SO(3) from prior works to standardize
the comparisons between different methods. However, it
is also interesting to see how each method performs when
trained without any augmentation (no-rotation setting I) but
tested on rotated shapes. Our additional results in classifi-
cation and part segmentation on I/1, I/z, and I/SO(3) are

Pooling | z/z z/SO(3) SO(3)/SO(3)
VN-PointNet
VN-MAX | 76.7 76.7 77.7
MEAN 71.5 77.5 77.2
VN-DGCNN
VN-MAX | 88.9 89.0 88.6
MEAN | 89.5 89.5 90.2

Table 7: Mean and max pooling — Comparisons between
the VN-MAX aggregation defined in Section 3.3 and the
standard mean aggregation (MEAN) which naturally pre-
serves equivariance. The two aggregations give comparable
results, while MEAN pooling performs slightly better than
VN-MAX in more cases. Note that VN-MAX also intro-
duces additional learnable weights compared to the mean
aggregation.

VN-In | z/z  2/SO(3) SO(3)/SO(3)

VN-PointNet

VN-lin 75.7 75.8 75.3

VN-lin+V 77.1 77.2 76.7

VN-MLP 78.0 77.8 77.3

VN-MLP+V | 77.5 71.5 77.2
VN-DGCNN

VN-lin 88.8 88.8 89.8

VN-lin+V 89.7 89.7 89.7

VN-MLP 89.9 89.9 90.1

VN-MLP +V | 89.5 89.5 90.2

Table 8: Invariance — Table 8 shows our ablation study on
the invariant layer (VN-In) in Section 3.5. Specifically, in
computing the equivariant coordinate systems 7T, follow-
ing (13), we compare the combinations of the following op-
tions: whether or not concatenating the global mean V to
the local feature V', and whether the VN-MLP is a 3-layer
VN-MLP (VN-MLP) or a single VN linear layer (VN-lin).
Improvements in performance with both the global mean V'
and the 3-layer VN-MLP are minor.

shown in Table 4 and Table 5 respectively. Compared to the
z-trained settings in Table 1 and Table 2, results here further
highlight the robustness of our VN networks on test-time
rotations in contrast to their rotation-sensitive counterparts.

8.2. Ablation Studies

Table 6, 7, and 8 show our ablation studies on non-
linearity, pooling, and the invariant layer in VN networks
on ModelNet40 classification.



