
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

(Supplementary Material)

7. Discussions

In this section, we discuss some extensions, alternatives,
and explanations to the VN layers in Section 3.

7.1. Non-linearity

Figure 7: A detached non-linear layer without built-in linear
layer.

Linear and non-linear layers – Fig. 7. The VN-ReLU de-
fined in Section 3.2 already consists of a built-in linear layer
q = WV (5) and the the non-linearity is applied to this
learned feature q. An alternative to this is to construct lin-
ear and non-linear layers separately, where the non-linearity
is directly applied to each input vector channel v ∈ V by

v′ =

®
v if ⟨v,k⟩ ⩾ 0

v −
¨
v, k

∥k∥

∂
k

∥k∥ otherwise,
(24)

Detaching the linear layer from non-linearity allows more
flexibility in constructing neural networks and, in practice,
gives better results in some cases. However, this also dou-
bles the network depth and can lead to longer training time
compared to the entangled linear-ReLU layer in (6). Exper-
imental comparisons will be shown in Section 8.2.
Other non-linearities. Though we only showed how to
define VN-ReLU in Section 3.2, a rich library of equiv-
ariant non-linearities can be defined in this manner using
the input-dependent direction vector k. An immediate ex-
tension is VN-LeakyReLU, where instead of clipping q∥ to
zero we contract it by a factor α ∈ (0, 1). In the manner of
the detached VN-ReLU in (24), the VN-LeakyReLU can be
easily expressed as:

fLeakyReLU(V ;α) = αV + (1− α)fReLU(V ). (25)

An entangled layer of VN-Linear and VN-LeakyReLU can
also be defined analogous to (6). More generally, given an
arbitrary non-linear scalar function h : R → R, we can

incorporate it into our VN non-linearity framework by ap-
plying it to q∥ along the k direction, namely,

v′ =
h(∥q∥∥)
∥q∥∥

q∥ + q⊥. (26)

7.2. Local Pooling

The VN-MAX pooling in Section 3.3 is defined across an
entire pointcloud V ∈ RN×C×3, but we can also aggregate
information locally via local pooling.
In the primal space. For any point x ∈ X with feature
V ∈ V we consider its K nearest neighbours {xk}Kk=1 in
the primal space and we denote by Vk ∈ V the correspond-
ing feature of xk. Similar to global pooling (9), local pool-
ing (in the primal space) is given by:

fMAX
(
{Vk}Kk=1

)
[c] = Vk∗ [c] (27)

where k∗(c) = argmax
k

⟨WkVk[c],Vk[c]⟩. (28)

Feature space locality. As in DGCNN [38], we can also
query theK nearest neighbours {Vk}Kk=1 of feature Vn ∈ V
in the feature space RC×3 directly, followed by local pool-
ing (in the feature space) with exactly the same formulation
as (28).

7.3. Batch Normalization

In VN-BatchNorm (10), for each input vector-list fea-
ture Vb, all entries in its per-channel 2-norm Nb are non-
negative, but after normalizing the distributions, the output
“2-norm” N ′

b can have negative entries. Geometrically, a
negative entry n′

c ∈ N ′
b means the orientation of its corre-

sponding vector channel is flipped, that is, v′
c ∈ V ′

b is in the
opposite direction of vc ∈ Vb.

To avoid the negative 2-norms, an alternative is to take
logarithms on all entries of Nb and then apply the standard
BatchNorm to log(Nb). So the VN batch normalization
becomes:

Nb = ElementWiseNorm(Vb) ∈ RN×1 (29)

{N ′
b}Bb=1 = BatchNorm

(
{log(Nb)}Bb=1

)
(30)

V ′
b [c] = Vb[c]

exp(N ′
b[c])

Nb[c]
, (31)

where log and exp act element-wise. However, taking log
and exp brings a lot of instability and in practice can cause
gradient explosion. Also, logarithms cannot be computed
for vectors with zero 2-norms.



Method I/I I/z I/SO(3)

PointNet 90.7 23.1 7.9
DGCNN 92.9 37.2 16.6

VN-PointNet 77.2 77.2 77.2
VN-DGCNN 90.0 90.0 90.0

Table 4: Test classification accuracy (%) on the Model-
Net40 dataset [41] with training on aligned data. I stands
for no-rotations.

Method I/I I/z I/SO(3)

PointNet 78.7 36.7 30.3
DGCNN 85.2 43.8 36.1

VN-PointNet 73.0 73.0 73.0
VN-DGCNN 81.5 81.5 81.5

Table 5: ShapeNet part segmentation results (mIoU). Train-
ing is done on aligned data without rotation augmentation.

Non-lin z/z z/SO(3) SO(3)/SO(3)

VN-PointNet

Built-in 77.5 77.5 77.2
Detached 78.2 78.1 76.8

VN-DGCNN

Built-in 89.5 89.5 90.2
Detached 90.8 90.7 90.2

Table 6: Non-linearity – We compare the performances of
entangled linear-ReLU (or linear-LeakyReLU) layers in (6)
with 2-tuples of a linear layer plus a separate non-linearity
in (24). “Built-in” stands for non-linearities with built-in
linear transformations, while “detached” stands for tuples of
detached linear and non-linear layers in (24). In most cases,
with either the VN-PointNet or the VN-DGCNN backbone,
disentangling linear and non-linear layers leads to slightly
better results. But this is also at the cost of a doubled net-
work depth and a longer training time (roughly ⩾ 1.5 times
to the entangled versions).

8. Additional Experiments
8.1. Training on Aligned Data

In Section 5, we adopt the three train/test settings z/z,
z/SO(3), SO(3)/SO(3) from prior works to standardize
the comparisons between different methods. However, it
is also interesting to see how each method performs when
trained without any augmentation (no-rotation setting I) but
tested on rotated shapes. Our additional results in classifi-
cation and part segmentation on I/I, I/z, and I/SO(3) are

Pooling z/z z/SO(3) SO(3)/SO(3)

VN-PointNet

VN-MAX 76.7 76.7 77.7
MEAN 77.5 77.5 77.2

VN-DGCNN

VN-MAX 88.9 89.0 88.6
MEAN 89.5 89.5 90.2

Table 7: Mean and max pooling – Comparisons between
the VN-MAX aggregation defined in Section 3.3 and the
standard mean aggregation (MEAN) which naturally pre-
serves equivariance. The two aggregations give comparable
results, while MEAN pooling performs slightly better than
VN-MAX in more cases. Note that VN-MAX also intro-
duces additional learnable weights compared to the mean
aggregation.

VN-In z/z z/SO(3) SO(3)/SO(3)

VN-PointNet

VN-lin 75.7 75.8 75.3
VN-lin + V 77.1 77.2 76.7
VN-MLP 78.0 77.8 77.3

VN-MLP + V 77.5 77.5 77.2

VN-DGCNN

VN-lin 88.8 88.8 89.8
VN-lin + V 89.7 89.7 89.7
VN-MLP 89.9 89.9 90.1

VN-MLP + V 89.5 89.5 90.2

Table 8: Invariance – Table 8 shows our ablation study on
the invariant layer (VN-In) in Section 3.5. Specifically, in
computing the equivariant coordinate systems Tn follow-
ing (13), we compare the combinations of the following op-
tions: whether or not concatenating the global mean V to
the local feature V , and whether the VN-MLP is a 3-layer
VN-MLP (VN-MLP) or a single VN linear layer (VN-lin).
Improvements in performance with both the global mean V
and the 3-layer VN-MLP are minor.

shown in Table 4 and Table 5 respectively. Compared to the
z-trained settings in Table 1 and Table 2, results here further
highlight the robustness of our VN networks on test-time
rotations in contrast to their rotation-sensitive counterparts.

8.2. Ablation Studies

Table 6, 7, and 8 show our ablation studies on non-
linearity, pooling, and the invariant layer in VN networks
on ModelNet40 classification.


