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A. Supplementary Results
Supplementary animations illustrating several conditional spatiotemporal experiments are available at https://www.

neeldey.com/deformable-templates.

Figure 1. FFHQ-Aging age and cohort conditional templates with normal glasses (top) and sunglasses (bottom). For ages 7 and older,
all methods produce plausible conditional templates, with Ours removing border effects and increasing shape and appearance variability.
Significant label noise and highly limited sample sizes are apparent for ages 0-2 within the “glasses” label and for ages 0-6 within the
“sunglasses” labels. For example, only two images exist within the training set for the male/with sunglasses/0-2 years old FFHQ-aging
class with both images displaying adults with sunglasses and not infants (as can be seen from the corresponding linear average). As a
result, methods using FiLM [20] (Ablation/noAdv and Ours) produce more adult-like templates in those age ranges. We speculate
the results come from the increased data fitting capacity of FiLM. Interestingly, methods which do not use FiLM (Ablation/VXM+Adv
and VXM) produce more plausible age-conditioned templates when all of the data for a category is mislabeled. This phenomenon arising
from significant label noise requires future investigation.
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Figure 2. Additional 2D views of unconditional 3D template construction on Predict-HD from all four methods. Methods using a dis-
criminator (Ablation/VXM+Adv and Ours) exhibit increased sharpness, cortical folding detail, and tissue contrast. Ours improves on
Ablation/VXM+Adv by removing subtle checkerboard artefacts, particularly visible in the coronal view.



Figure 3. Example dHCP template-to-image registration results for all methods on training data (top subfigures) and held-out test data
(bottom subfigures), with varying gestational ages. Deformation norms for the 3D displacement fields are annotated on the top-right.
We visualize training set results in addition to test data as a large age range (29-31weeks) of interest is not present in the test set (See
Figure B.1). As our templates show higher condition (age) specificity, the deformations are smaller and more anatomically plausible as
compared to baselines and ablations.



Figure 4. Example Predict-HD template-to-image registration results for all methods on held-out test data, with varying ages and cohorts.
Deformation norms for the 3D displacement fields are annotated on the top-right. All methods produce comparable moved templates.
However, ours yields smaller deformations as seen from the displacement fields (especially visible in 72.2yrs/HD and 67.4yrs/CS).



Figure 5. Interpolations between control subjects (CS) and subjects with the Huntington’s disease (HD) mutation ([0, 0.2, 0.4, 0.6, 0.8, 1]),
for fixed ages, obtained by linearly interpolating between one-hot attribute vectors. Both methods (VXM and Ours) achieve interpolations
which match clinical expectations, e.g., with ventricles growing larger as the HD weight increases. Ours displays larger differences
between CS and HD with correspondingly larger changes visible in the interpolations, as can be seen from the last row of the figure.



Figure 6. Example template segmentations for all methods generated by majority voting on inverse warped labels of training images. We
emphasize that no segmentation labels are used in template construction or registration and that these segmentations are used only for Dice
coefficient evaluation and temporal volume trends.



Figure 7. Temporal Entropy Focus Criteria (EFC, lower is better) for conditional templates on the dHCP (left), Predict-HD/Huntington’s
Disease (center), and Predict-HD/Control Subjects (right). In all cases, methods using a discriminator (Ablation/VXM+Adv and Ours)
achiever lower EFC over non-generative adversarial methods. These results should be interpreted in context as:
(1) While Ablation/VXM+Adv and Ours achieve equivalent EFC/sharpness, Ours displays increased condition-specificity and cen-
trality as shown in the experiments in the primary text.
(2) Although commonly used to evaluate unconditional template sharpness, EFC is a heuristic surrogate for image sharpness and can
fluctuate with varying structure. As Ablation/noAdv and Ours show strong structural changes temporally, their temporal trends show
higher variability as compared to techniques which present smaller structural changes (Ablation/VXM+Adv and VXM). As a result, EFC
should be compared across methods at individual timepoints.

Figure 8. Negative results for dHCP conditional template segmentation for the Deep Gray Matter (dGM) label. DrawEM [14] (the tool used
for dHCP template segmentation) with its default parameters overestimates dGM volume on the templates sampled at younger timepoints
by Ablation/noAdv and Ours. For example, on the right, we show the generated templates from all methods at 29 weeks gestational
age, with their DrawEM segmentation results below. While Ablation/noAdv and Ours produce more anatomically plausible templates
compared to VXM and Ablation/VXM+Adv, the segmentation algorithm overestimates dGM volume. All other labels better match the
underlying volume trends on the real data as shown in Figure 4 of the main text. In future work, careful tuning of DrawEM parameters on
validation data may resolve this dGM overestimation.

B. Experimental Details
B.1. Data Preparation

All foreground/brain extraction is performed by thresholding provided segmentation labels. All neuroimages are cropped
to a central field-of-view of resolution 160 × 192 × 160. We obtain all linear averages required for the neuroimaging
experiments using voxel-wise averages of a 100 randomly chosen training scans. All 60,000 training images are used to
compute the linear average for FFHQ (while we visualize group-wise L2 barycenters in row 1 of Figure 1 for comparison,
our framework uses the overall L2 barycenter for training).



Figure 9. Histograms of sample size vs. scan age for both dHCP (top row) and Predict-HD (bottom row), for the constructed training sets
(left column) and test sets (right column). Both datasets present both a significant gap between training and test sets in terms of scan age
sampling.

B.1.1 Predict-HD

Predict-HD provides longitudinal scans from 388 individuals with and without the Huntington’s Disease (HD) genetic condi-
tion. As imaging was performed across several distinct scanning sites, the images present highly heterogeneous appearance.
All T1 images were bias corrected and segmented using procedures described in [19]. Prior to learning nonlinear deformable
registration, we affinely register all T1 images to MNI [9], thus resampling them to 1 × 1 × 1mm3. Out of 1121 images,
4 either failed affine alignment or had missing covariates and were discarded. We use 897, 30, and 190 images for train-
ing, validation, and testing, respectively, split at the subject level. In the context of this study, we do not currently consider
longitudinal subject-specific effects in our conditional template estimation.

To compute template-to-image registration accuracy via Dice coefficient evaluation, we follow the template segmentation
protocols outlined in [7]. Briefly, we select training scans within the ages of 25 and 65 years old wherein we have sufficient
sample sizes for both cohorts and for both train and test sets. Accordingly, our Dice coefficient evaluation is only conducted
on held-out test subjects between the ages of 25 and 65 (176 out of 190). The images are split into 5-year-wide age bins with
a single template sampled at the center of the bin (i.e., a 52.5 year old HD template for HD subjects with ages between 50
and 55). For each cohort, all training segmentations within a bin are inverse warped to the bin-specific template, followed
by majority voting on the labels to obtain the template segmentation for that age-bin and group. Unconditional template
segmentations are performed via the same procedure, without the need for binning time points. In the future, other label
fusion methods accounting for local intensities can be incorporated [22].

B.1.2 dHCP

Release 2 of the developing human connectome project (dHCP) was pre-processed by a specialized pipeline for neonatal
image analysis [15] including steps such as motion-correction, super-resolution (from 0.8 × 0.8 × 1.6mm3 to 0.5 × 0.5 ×
0.5mm3), bias correction, brain extraction, and segmentation [14]. For GPU memory, we crop to a central field-of-view and
minimally resize images from 0.5 × 0.5 × 0.5mm3 voxel resolution to 0.6132 × 0.6257 × 0.6572mm3 for a final image



size of 160× 192× 160. For training, validation, and testing, we first assign all twins and repeat scans to the training set to
prevent test set leakage and randomly hold-out a 100 scans from the remainder (15 for validation, 85 for testing), resulting in
458 training images. We construct an affine template for the training set with ANTs to which every scan is affinely aligned.

To generate segmentations for conditional templates generated by all methods for use in computing registration accuracy
via Dice coefficients and analyzing volumetric trends of anatomical regions-of-interest, we use DrawEM [14]. Briefly,
DrawEM is a multi-atlas EM-segmentation pipeline based on the neonatal ALBERT templates [10] using normalized mutual
information based image registration. This is in contrast to the majority voting template segmentation procedure for Predict-
HD above and [7]. DrawEM segmentation was performed instead of majority voting as several time points have very limited
sample sizes not suitable for majority voting when using regularized registration, leading to qualitatively inaccurate template
segmentations. We find that DrawEM produces sufficiently accurate segmentations on templates produced by all methods
(as shown in Figure 3 of the main text, see Figure 8 in the supplementary material for a counter-example). Unconditional
template segmentation was performed following [7].

B.1.3 FFHQ-Aging

FFHQ-Aging [17] annotates images in the FFHQ [12] human face dataset. These annotations include genders, ages (in 10
age bins), head pose (pitch, roll, and yaw), type of glasses (no glasses, normal glasses, sunglasses), eye occlusion scores, and
segmentation labels (obtained by a DeepLabV3 [6] model pre-trained on CelebAMask-HQ). For simplicity, we only use the
categorical attributes, leaving head pose and eye-occlusion conditioning to future work. We train all models on the FFHQ
training set of 60,000 images (out of 70,000). As is common [3], we restrict ourselves to qualitative evaluations for face
templates. Importantly, we note that categorical template conditions for human faces are quite coarse as attributes such as
gender are not purely categorical. Further, we note that the data set is skewed towards lighter skin tones (as evidenced by the
linear averages of training images visualized in Supplementary Figure 1), which is consequently reflected in the synthesized
templates from all methods. In future work, more careful modeling and diverse data collection protocols may work towards
ameliorating these issues.

B.2. Additional Implementation Details

Design choices and hyperparameters. Architectures are given in Table 1. All estimated templates for neuroimaging
experiments are masked by a foreground mask during training for all methods to suppress commonly occurring background
artefacts. The foreground mask was obtained by thresholding a linear average of training images. Reflection padding was
used instead of zero-padding for all methods as it led to slightly fewer checkerboard artefacts. LeakyReLU slopes were set
to 0.2. A window of 100 updates is used for the moving average deformation penalty ū for all datasets. For condition vectors
z, we encode age as a continuous attribute (for the neuroimaging where we have access to continuous age values) divided by
the maximum age in the dataset, and categorical attributes as one-hot vectors. We find that not rescaling continuous attributes
in z can lead to discriminator instability. Weight decay was applied on the linear projections from the FiLM embedding to
the individual layers with weight 10−5 for neuroimages and 10−6 for FFHQ-Aging.

We choose the stationary velocity field (SVF [1, 2]) framework primarily for its speed and ease of implementation and
note that other frameworks such as LDDMM [4] can also be used. The integration over time t ∈ [0, 1] is in practice
implemented for all methods with five scaling and squaring layers which have been shown to produce smooth diffeomorphic
displacement fields [1, 8]. While all training is performed on full resolution 3D volumes, velocity and displacement fields
are estimated at half-resolution and then linearly scaled up during training as in [7]. This resizing has an implicit smoothing
effect. Implementations of spatial transformers and scaling and squaring layers are taken from the voxelmorph library at
voxelmorph.mit.edu.

For FFHQ-Aging, we make a few changes from the neuroimaging datasets. FFHQ-Aging provides ages in categorical form
and are thus treated as one-hot representations. Linear averages for FFHQ-Aging were computed across the entire training
dataset due to the high number of classes. As the dataset has a left-right head pose asymmetry (particularly pronounced
in subclasses with few samples), we use horizontal reflection augmentation for all methods when training the template
generation and registration sub-networks. We further use a penalty ∥I − ILR∥22 with unit weight (where ILR indicates a
left-right reflection of I) for all methods to encourage symmetric face templates.

Optimization Details. As GAN training involves the joint optimization of two networks, the optimization parameters used
in either network impacts training stability. The Adam [13] optimizer is used in all networks. For conditional dHCP and
Predict-HD training, we adopt a two-time-scale-update-rule (TTUR [11]), with step size ηG = 10−4, ηD = 3 × 10−4,
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using β1 = 0.0, β2 = 0.9 in both networks as is common in recent GAN works [5, 18]. For conditional FFHQ-Aging, we
reduce ηD to 2 × 10−4 as additional stability was needed for highly challenging face registration. Unconditional template
optimization was found to be amenable to mild amounts of momentum and was performed with step-size η = 10−4, β1 = 0.5,
and β2 = 0.999 used in both generator and discriminator for faster convergence. We note that momentum is theoretically
contraindicated for R1 gradient penalty on the discriminator but we did not find this to be an issue in practice. The non-GAN
baselines (VXM and Ablation/noAdv) were trained with the same strategies to enable valid comparisons.

ANTs SyGN parameters. We use the antsMultivariateTemplateConstruction2.sh script provided by the
ANTsX ecosystem [21] which implements the SyGN algorithm from [3]. We use the default construction parameters, includ-
ing the squared local normalized cross-correlation objective, four template updates, using a four-level registration pyramid
with at 6×, 4×, 2× downsampling for the first three resolutions, and 100×100×70×20 iterations per resolution. We turn off
the default bias field correction and linear registration steps as these are performed during data pre-processing. Registrations
between the estimated template and held-out test images were performed with the same registration parameters. We leave
the default Laplacian sharpening on for all comparisons.

Miscellaneous Experimental Details. All networks are implemented in TensorFlow 2.2 and trained on a single
NVIDIA V100 GPU. As the GAN frameworks (Ours and Ablation/VXM+Adv) require concurrent optimization of two
3D networks, we found 16 GB vRAM neccessary for training. All entropy focus criteria are calculated within a common
brain mask for the dataset.

C. Projection Discriminator
We use the inner product-based framework presented in [16] who observe that the optimum for the standard adversarial

loss can be written as (equation 2 of [16]):

f∗(x, y) = log
( q(y|x)q(x)
p(y|x)p(x)

)
= log

(q(y|x)
p(y|x)

)
+ log

(q(x)
p(x)

)
:= r(y|x) + r(x)

where x represents unconditional input, y represents conditional information, and q and p are the real and synthesized data
distributions, respectively. When we have conditioning y = [ycat, ycon] such that ycat is categorical and ycon is continuous,
assuming that they are conditionally independent given x, we obtain through simple modification:

f∗(x, y) = log
( q(ycat, ycon|x)q(x)
p(ycat, ycon|x)p(x)

)
= log

(q(ycat, ycon|x)
p(ycat, ycon|x)

)
+ log

(q(x)
p(x)

)
= log

( q(ycat|x)q(ycon|x)
p(ycat|x)p(ycon|x)

)
+ log

(q(x)
p(x)

)
= log

(q(ycat|x)
p(ycat|x)

)
+ log

(q(ycon|x)
p(ycon|x)

)
+ log

(q(x)
p(x)

)
:= rcat(y|x) + rcon(y|x) + r(x),

with the remaining analysis following [16] leading to the projection-discriminator expression given in the main text.



Template Generator (T )

Inputs: conditions z ∈ Rc

Embed z ∈ Rc into ẑ ∈ R64 using C
Learn Parameters h ∈ R80×96×80×8

FiLM(ẑ)
ConvSN, 8 → 32

5× ResBlockSN, 32 → 32
Upsample 2× trilinearly

ConvSN, 32 → 8, FiLM(ẑ), LeakyReLU
ConvSN, 8 → 8, FiLM(ẑ), LeakyReLU

ConvSN, 8 → 8, FiLM(ẑ)
ConvSN, 8 → 1, FiLM(ẑ), tanh

Add to average of training images for T (ẑ)

Registration Network (R)

Inputs: template T (ẑ); target F
h0 : Concatenate(T (ẑ), F )

h1 : Conv, Stride 2, 2 → 32, LeakyReLU
h2 : Conv, Stride 2, 32 → 32, LeakyReLU
h3 : Conv, Stride 2, 32 → 32, LeakyReLU
h4 : Conv, Stride 2, 32 → 32, LeakyReLU

h5 : Conv, 32 → 32, LeakyReLU
h6 : Conv, 32 → 32, LeakyReLU, Up 2×, concat h3

h7 : Conv, 32 → 32, LeakyReLU, Up 2×, concat h2

h8 : Conv, 32 → 32, LeakyReLU, Up 2×, concat h1

h9 : Conv, 32 → 32, LeakyReLU
h10 : Conv, 32 → 32, LeakyReLU

h11 : Conv, 32 → 16
v : ConvBlock, 16 → 3

φ : 5 × Scale and Square(v)
M(T (ẑ)) : STN(T (ẑ), φ)

Discriminator (D)

Inputs: image x ∈ R160×192×160; attributes z ∈ Rc

ConvSN, stride 2, 1 → 64, Leaky ReLU
ConvSN, stride 2, 64 → 128, Leaky ReLU
ConvSN, stride 2, 128 → 256, Leaky ReLU
ConvSN, stride 2, 256 → 512, Leaky ReLU

Conv, stride 1, 512 → 64 to D′(x)
Projection(D′(x), z)

Embedding/FiLM Generator (C)

Inputs: attributes z ∈ Rc

Dense(64), LeakyReLU
Dense(64), LeakyReLU
Dense(64), LeakyReLU

Dense(64), LeakyReLU for C(z)

Table 1. Architectures for Conditional Predict-HD and dHCP consisting of a template generator (top left), a registration network (top
right), a discriminator network (bottom left) and a FiLM embedding generator (bottom right). Conv represents a 3×3×3 convolutional
layer (ConvSN indicates use of spectral normalization). A ResBlockSN consists of two blocks of sequential ConvSN and LeakyReLU
layers with an additive skip connection. For unconditional template estimation, we do not use any FiLM layers. For FFHQ-Aging, we
use the same architectures, only replacing the 32 per-layer filters with 64 in the template generator (due to the higher number of classes),
using ConvSN instead of Conv in the generator and the penultimate layer of the discriminator, and reducing the channel multiplier in the
discriminator from 64 to 32.
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