
Local Temperature Scaling for Probability Calibration
Supplementary Material

This supplementary material provides additional details for our approach. Specifically,

1. Appx. A briefly introduces additional related work about uncertainty quantification. This section connects with §2 in
the main manuscript and provides additional comments regarding uncertainty quantification approaches in relation to
our approach.

2. Appx. B describes the networks we use for LTS and IBTS. This section connect with §3.4 and Fig. 3 in the main
manuscript and provides details about the tree-like convolutional neural network we use to train the IBTS and LTS
models. We emphasize that the network architecture is not our contribution, it is inspired and modified from [40] and
other network architectures could also work.

3. Appx. C provides dataset descriptions and implementation details. This section connects with §4, §4.1, §4.2, §4.3,
and §4.4 in the main manuscript and details (1) the dataset we use; (2) the training/validation/testing data split of
segmentation and calibration; (3) the specific hyper-parameters we use to train both segmentation models and calibration
models; (4) the GitHub repositories for baseline calibration methods we compare against.

4. Appx. D provides additional examples for local reliability diagrams. This section connects with §3.4 and Fig. 2 in the
main manuscript to additionally show the spatially-variant feature of our LTS approach.

5. Appx. E discusses our temperature scaling approaches from an entropy point of view. This section connects with §3.5
in the main manuscript to prove the theorems to support our claims. Specifically, this section discusses the relation of
entropy and cross entropy and uncovers why our temperature scaling approaches (TS, IBTS, LTS) works.

6. Appx. F details the evaluation metrics we use for semantic segmentation. This section connects with §4, Fig. 2, Tab. 1,
and Tab. 2 in the main manuscript to provide formal definitions for all our evaluation measures.

7. Appx. G illustrates the Boundary and All evaluation regions. This section connects with §4 and Tab. 1 in the main
manuscript to illustrate a visual example of the different regions we evaluate. Note that the results in the All region
reflect the overall calibration performance for an image segmentation; results in the Boundary region reflect the most
challenging calibration performance for an image segmentation.

8. Appx. H shows evaluation results for the Local region for different patch sizes. This section connects with §4 and Tab. 1
in the main manuscript to indicate how the local patch size influences the quantitative results. Note that results in the
Local region generally reflect whether the calibration method can handle spatial variations. This is different from the
All and Boundary regions discussed in Appx. G above.

9. Appx. I discusses variations across the different datasets. This section connects with §4.1, §4.2, §4.3, §4.4 and Tab. 1 in
the main manuscript and explains the different magnitudes of the quantitative results for different datasets. Specifically,
the COCO dataset shows the biggest variantions, followed by the CamVid dataset and lastly LPBA40 exhibits the
smallest variations. Due to the different levels of variation of the different datasets, the reported values in COCO are
larger than those in CamVid and the smallest values are observed in LPBA40.

10. Appx. J contains additional evaluation results besides the results presented in Tab. 1. This section connects with §4.2
and Tab. 1 in the main manuscript to further strengthen our manuscript. These results are line with the conclusions we
obtain in §4, i.e. our LTS approach generally works best among different baseline methods.

11. Appx. K provides details on joint label fusion for multi-atlas segmentation. This section connects with §4.4 and Tab. 2
in the main manuscript to provide details about the downstream MAS label fusion task. Specifically, this section illus-
trates why the VoteNet+ based joint label fusion method is sensitive to accurate probability predictions, which in turn
demonstrates that improved calibration of our approach results in improved fused segmentation results.

A. Additional Related Work

Probability calibration can be used for uncertainty estimation [37] as calibrated probabities can directly be used as measures
of uncertainty. However, methods that provide uncertainty estimates are not necessarily calibrated. Most existing work on
uncertainty estimation starts with a Bayesian formulation [37, 29, 46], whereby a prior distribution is specified, and the
posterior distribution over the parameters is optimized over the training data. These Bayesian models should result in better
calibrated probability measures if their prior assumptions are valid. However, when some of the underlying assumptions
are violated, the results may not be calibrated: [32] is a good example for a Bayesian model improving calibration, but not
achieving it. Other uncertainty estimation approaches include ensembles [37] and Monte Carlo dropout [16], which help
probability calibration but do not directly cope or achieve it. Gaussian Process (GP) approaches [65] can inherently provide
good uncertainty estimates, but may suffer from lower accuracy and higher computational complexity on high-dimensional
classification tasks. In particular, a GP will only provide calibrated measures of uncertainty if the Gaussian assumption is
valid. In practice, this may not be the case when combined with a deep network [63]. Further, GP models are costly for
classification and GP regression formulations require calibration [48, 65]. Our formulation is entirely different and directly
predicts calibration parameters for softmax layers. Our model does not depend on any assumption and is a completely
poct-hoc approach for any pre-trained segmentation model with probability outputs.

B. Networks for LTS and IBTS

To obtain T ⇤ in Eq. (3.3), we directly optimize the parameter T with respect to the NLL loss on the hold-out validation dataset.

To obtain Ti(x)⇤, we borrow the idea of soft decision trees [27] and propose to use a tree-like convolutional neural net-
work [40] to predict Ti(x), which has fewer parameters than a standard convolutional neural network while achieving com-
parable state-of-the-art performance [40]. We resort to such a simpler tree-like model, because one of the datasets that we
use for evaluation is relatively small, though more complex models could be further explored.

Figure 4: LTS (left) and IBTS (right) hierarchical tree-like architectures demonstrated in 2-D. W is the image width, D is the image
length, L is the number of classes, C is the number of channels. x is the patch centered at location x of size L⇥ 5⇥ 5. Its corresponding
patch inside image I is denoted by y, which is of size C ⇥ 5 ⇥ 5. � is the sigmoid function. Input to the model are the logits of size
L ⇥ W ⇥ D. Output is the spatially varying temperature value of the image (1 ⇥ W ⇥ D) for LTS or an image-dependent temperature
scalar value (1 ⇥ 1 ⇥ 1) for IBTS. vi and cj are convolutional filters of size L ⇥ 5 ⇥ 5 (except v5 is of size C ⇥ 5 ⇥ 5 to be compatible
with the size of image). Note that the dilation is 2 for all convolutional filters, thus resulting in a 9⇥9 receptive field.

The proposed framework is constructed as a pre-specified hierarchical binary tree in which each leaf is a convolutional
filter learned during training. Denote the leaf node with index m as vm, the patch in logits z to be convolved as x and its
corresponding patch in image I to be convolved as y. Since a convolutional layer can be transformed into a fully-connected
layer, which is essentially a matrix multiplication plus a bias offset, we use vT

mx to represent the convolution operation in
the framework for ease of notation (omit bias offset for simplicity). For internal nodes of the tree, each parent node value
is a mixture (i.e. weighted average) of children nodes’ values and the mixture parameter is also learned during training.
Specifically, we use a convolution operation cm plus a sigmoid function � to determine the mixture parameter �(cTmx). The
root node is the final output. For IBTS, the output is a single temperature value for the logits, while, for LTS, the output is a
temperature map which has the same size as the input logits, except that the number of feature channels is 1. Thus, the nodes
of the tree can be represented as follows:

Hm(x,y) =

8
>>><

>>>:

vT
my + 1 if leaf node in image

vT
mx+ 1 if leaf node in logits

�(cTmx)Hm,logits,left(x) + (1� �(cTmx))Hm,logits,right(x) if internal node in logits
ReLU

�
�(cTmx)Hm,logits(x) + (1� �(cTmx))Hm,image(y)

�
+ " if root node

, (B.1)

where ReLU is the Rectified Linear Unit, Hm(x,y) is the root node value, Hm,logits,left(x) and Hm,logits,right(x) are the left
child node value and right child node value for internal nodes in logits, respectively. Hm,logits(x) is the top node containing
information only from the logits and Hm,image(y) is the top node containing information only from the image. " is a very
small positive real number to guarantee the positivity for the output temperature value. The +1 value for the leaf node is for
model initialization and stabilization. With this trick, the learning process is more stable and the performance is much better.
If there are only leaf nodes, then the convolution filters are trying to learn the residual of the temperature scalar value with
respect to the standard uncalibrated temperature value 1. Fig. 4(left) illustrates the proposed tree-like learning framework for
LTS. For simplicity, let us assume the output is positive, then the specific representation becomes

Htree(x,y) = �(cT8 x)(v
T
5 y + 1)

+ (1� �(cT8 x))
�
�(cT7 x)

⇥
�(cT5 x)(v

T
1 x+ 1) + (1� �(cT5 x))(v

T
2 x+ 1)

⇤

+ (1� �(cT7 x))
⇥
�(cT6 x)(v

T
3 x+ 1) + (1� �(cT6 x))(v

T
4 x+ 1)

⇤
.

(B.2)

To connect back to the definition in §3.4, Htree is the network H , vi and cj are parameters ↵, x is the patch centered at
location x in logits z, y is the corresponding patch of image I.

To obtain T ⇤
i , we modify the above-mentioned network Htree to predict one temperature value Ti for each image. We add an

average pooling layer after Htree to get the image-based temperature value. Specifically, using F to represent the network
of IBTS as in Eq. (3.5), we have F = 1

|⌦|
P

x2⌦ Htree(x,y), where x is the patch centered at location x in logits z, y is
the corresponding batch of x in image I, and ⌦ is the logits space. Fig. 4(right) illustrates the proposed tree-like learning
framework for IBTS. Source code is publicly-available at https://github.com/uncbiag/LTS.

C. Dataset Description and Implementation Details
We use the following image segmentation datasets in our experiments:

1. COCO [42]: The Common Object in Context (COCO) [42] dataset is a large-scale dataset of complex images. It
provides pixel-level labels for 118K training images (COCO train2017) and 5K validation images (COCO val2017).
Further, the COCO-stuff [8] dataset augments COCO with dense pixel-level annotations for 80 thing classes and 91
stuff classes. For simplicity, we focus on the 20 categories that are present in the Pascal VOC [14] dataset for our
experiments, considering the remaining classes as background.

2. CamVid [7, 6]: The Cambridge-driving Labeled Video Database (CamVid) [7, 6] is a collection of videos with object
class semantic labels. We use the split and image resolution as in [28], which consists of 367 frames for training, 101
frames for validation and 233 frames for testing. Each frame has a size of 360⇥480 and its pixels are labeled with 11
semantic classes excluding background.

3. LPBA40 [62]: The LONI Probabilistic Brain Atlas (LPBA40) [62] dataset contains 40 T1-weighted 3D brain MR
images from healthy patients. Each image has labels for 56 manually segmented structures. For preprocessing, all
images are first affinely registered to the ICBM MNI152 nonlinear atlas [18] using NiftyReg [49, 50, 60] and intensity
normalized via histogram equalization.

For the Fully-Convolutional Network (FCN) experiment in §4.1, we use the COCO val2017 dataset for our calibration
experiment in which the training/validation/testing images are partitioned in sets of size 3.5K/0.5K/1K, respectively. We use
the PyTorch pre-trained model1 for semantic segmentation on the COCO dataset. This is an FCN [43] with a ResNet-101 [23]

1https://pytorch.org/docs/stable/torchvision/models.html#semantic-segmentation

backbone. The pre-trained model has been trained on a subset of COCO train2017, i.e., for the 20 categories that are present
in the Pascal VOC [14] dataset. For details, please resort to the Pytorch official webpage (footnote) mentioned above.

For the Tiramisu experiment in §4.2, we use the hold-out validation dataset for our calibration experiment in which the
training/validation images are 90/11. Finally the calibration performance is tested on the testing dataset which includes 233
images. We use the PyTorch Tiramisu2 segmentation model [28] on the CamVid dataset. Training details are included in the
GitHub repository.

For the U-Net experiment in §4.3, we use a 2-fold cross-validation setup to cover all the 40 images in the dataset.
Training/validation/testing images are partitioned as 17/3/20. This is consistent with the setting in [12]. We use 4-fold
cross-validation for our calibration experiment to cover all 40 images. Training/validation/testing images are partitioned
as 10/3/10 for each fold. The U-Net takes patches of 72 ⇥ 72 ⇥ 72 of the training images, where the 40 ⇥ 40 ⇥ 40 patch
center is used to tile the volume. The output is the voxel-wise probability of each label at each position. Training patches
are randomly cropped assuring at least 5% correct labels in the patch volume. We use Adam [33] with 300 epochs and a
multi-step learning rate. The initial learning rate is 1e-3, and then reduced by 90% at the 150-th epoch and the 250-th epoch,
respectively. Cross-entropy loss is used as the loss function. When calibrating, within each fold of the U-Net 2-fold cross
validation, we perform another 2-fold cross validation. Specifically, 23 images (3 from validation and 20 from testing) are
split into 10/3/10 for train/validation/test. 2-fold cross-validation will cover all 20 testing images of U-Net testing. This
design results in a 4-fold cross validation experiment to cover all 40 images.

For the Downstream MAS label fusion experiment in §4.4, we use 2-fold cross-validation to cover all the images. In each
fold, 17 atlases are chosen. Training/validation/testing images are partitioned as 272/51/340. This is consistent with the
setting in [13]. We use 4-fold cross-validation for the calibration experiments to cover all images. Training/validation/testing
are partitioned as 170/51/170 for each fold. Training data for VoteNet+ is acquired by deformable image registrations.
Specifically, the same 17 images as for the U-Net training are chosen as atlas images. First, all 17 atlases are registered
to each other, which results in 17 ⇥ 16 = 272 pairs of training data. Then all 17 atlases are registered to the 3 validation
images for the U-Net, which results in 17 ⇥ 3 = 51 pairs of validation data. Finally, all 17 atlases are registered to the
20 testing images for the U-Net, which results in 17 ⇥ 20 = 340 pairs of testing data. The same 2-fold cross-validation
strategy still applies to VoteNet+, but with the data split as 272/51/340 for train/validation/test. VoteNet+ takes patches
of 72 ⇥ 72 ⇥ 72 from the target image and a warped atlas image at the same position, where the 40 ⇥ 40 ⇥ 40 patch
center is used to tile the volume. The output is the voxel-wise probability, indicating whether the warped atlas label is
equal to the target image label. We use Adam [33] with 500 epochs with a multi-step learning rate. The initial learning
rate is 1e-3 and then reduced by half at the 200-th epoch, 350-th epoch, and 450-th epoch respectively. Same as for the
U-Net, training patches are randomly cropped assuring at least 5% correct labels in the patch volume. Binary cross-entropy
is used as the loss function. When calibrating, within each fold of the VoteNet+ 2-fold cross validation, we perform a
2-fold cross validation. Specifically, 391 pairs (51 from validation and 340 from testing) are split into 170/51/170 for
train/validation/test. 2-fold cross-validation will cover all 340 testing pairs of VoteNet+ testing. This design results in a
4-fold cross validation experiment to cover all 680 pairs. Furthermore, we use joint label fusion (JLF) [64] to obtain the fi-
nal segmentation for each image. See Appx. K for more information on MAS and label fusion, as well as experimental details.

To train IBTS and LTS, we use Adam [33] with 100 epochs and a multi-step learning rate. The initial learning rate for the
LPBA40 dataset is 1e-4 and is reduced to 1e-5 after 50 epochs, while for the COCO and the CamVid dataset, it is 1e-5 and
is reduced to 1e-6 after 50 epochs. We use the cross-entropy loss. The loss is evaluated over the All region to ignore the
majority of the background.

The FL and MMCE losses are from the GitHub repository3 of [52]. Isotonic regression (IsoReg) [68] and ensemble temper-
ature scaling (ETS) [69] are from the GitHub repository4 of [69]. Vector scaling (VS) [20] and Dirichlet calibration with
off-diagonal regularization (DirODIR) [34] are from the GitHub repository5 of [34]. Training with FL and MMCE follows
the same recipe as training with the multi-class entropy loss except that the training loss term is changed. The GitHub imple-

2The implementation follows this GitHub repository: https://github.com/bfortuner/pytorch_tiramisu
3https://github.com/torrvision/focal_calibration/tree/main/Losses
4https://github.com/zhang64-llnl/Mix-n-Match-Calibration
5https://github.com/dirichletcal/experiments_neurips

Figure 5: An example of global and local reliability diagrams for different methods for the Tiramisu semantic segmentation experiment
(§4.2). I is the image, P̂ is the predicted uncalibrated probability, and Ŝ is the predicted segmentation. Figures are displayed in couples,
where the left figure is the probability distribution of pixels/voxels while the right figure is the reliability diagram (See Appx. F for
definitions). The top row shows the global reliability diagrams for different methods for the entire image. The three rows underneath
correspond to local reliability diagrams for the different methods for different local patches. LTS not only calibrates probabilities well for
the entire image but also calibrates probabilities better than TS and IBTS in local pacthes.

mentation repository6 provides all details about the hyper-parameters of training of the deep Tiramisu network; we thus omit
them here to avoid duplication. For DirODIR, the hyper-parameters for off-diagonal regularization and bias regularization
are both set to 0.01. We use Adam for a maximum of 100 epochs with early stop patience set to 10 epochs, i.e. training stops
early if 10 consecutively worse epochs are observed. The model is trained with an initial learning rate of 1e-3 and fine-tuned
with a learning rate of 1e-4.

D. Local Reliability Diagrams
To visualize the spatially-varying property of LTS, we show the local reliability diagram of Tiramisu for the CamVid experi-
ment in Fig. 5. Similar to the conclusion from Fig. 2, Fig. 5 also suggests that LTS performs better than TS and IBTS for the
entire image as well as for the local image patches. This observation is consistent with results in Tab. 1.

E. Temperature Scaling from Entropy Point of View
Temperature scaling can also be connected to entropy [20]. In this section, we establish the relation between entropy and
temperature scaling by showing that different temperature scaling models are indeed the solutions for entropy maximization
or minimization subject to different constraints. Note that a related insight has been proposed in [20] for classification.
We extend it to semantic segmentation for our different temperature scaling settings and provide detailed discussions.
Specifically, we show the solutions of TS, IBTS and LTS when minimizing NLL in Appx. E.1; we define overconfidence
and underconfidence in Appx. E.2; we show the entropy maximization and minimization solutions without constraints in
Appx. E.3; we deduct the solutions for entropy maximization under the condition of overconfidence as well as for entropy
minimization under the condition of underconfidence in Appx. E.4; finally, we show that the solutions for minimizing
NLL w.r.t. TS, IBTS, LTS are also the solutions for entropy maximization in the case of overconfidence or the solutions
for entropy minimization in the case of underconfidence in Appx. E.5. Overall, TS, IBTS and LTS determined based on
a given dataset results in NLL (cross entropy) and entropy reaching an equilibrium which empirically corresponds to a
well-calibration state.

6https://github.com/bfortuner/pytorch_tiramisu

E.1. Minimize NLL with (Local) Temperature Scaling

Lemma 1. Given a logit vector map z(x) at position x and its corresponding probability map obtained via softmax function
(�SM) the weighted averaged logits with temperature scaling (TS) are (1) monotonic with respect to temperature value and
(2) yield the following bounds:

1

L

LX

l=1

z(x)(l) 
LX

l=1

z(x)(l)�SM

�
z(x)/T

�(l)  max
l

{z(x)(l)}. (E.1)

Proof. Let � = 1
T and denote F(�) =

PL
l=1 z(x)(l)�SM

�
�z(x)

�(l)
=
PL

l=1 z(x)(l) exp
�
�z(x)(l)

�
PL

j=1 exp
�
�z(x)(j)

� . Then we take the

derivative with respect to �,

@F(�)

@�
=

⇣PL
l=1(z(x)(l))2 exp

�
�z(x)(l)

�⌘⇣PL
l=1 exp

�
�z(x)(l)

�⌘
�
⇣PL

l=1 z(x)(l) exp
�
�z(x)(l)

�⌘2

⇣PL
j=1 exp

�
�z(x)(j)

�⌘2 . (E.2)

By the Cauchy–Schwarz inequality, we have

⇣ LX

l=1

(z(x)(l))2 exp
�
�z(x)(l)

�⌘⇣ LX

l=1

exp
�
�z(x)(l)

�⌘
�
⇣ LX

l=1

z(x)(l) exp
�
�z(x)(l)

�⌘2
.

Thus, @F(�)
@� � 0. This indicates that the function F(�) is monotonicly increasing with respect to �. Since the temperature

scaling value T is non-negative, i.e., T 2 R+, we have � 2 R+. Furthermore,

� ! 0, �SM

�
�z(x)

�(l)
=

1

L
, 8l = 1, ..., L;

� ! +1, �SM

�
�z(x)

�(l)
=

(
1, maxj{z(x)(j)} = z(x)(l),
0, otherwise.

(E.3)

Therefore, we have 1
L

PL
l=1 z(x)(l)  F(�)  maxl{z(x)(l)}.

Remark. If T is allowed to be negative, i.e. T 2 R, then the following bounds hold:

min
l
{z(x)(l)} 

LX

l=1

z(x)(l)�SM

�
z(x)/T

�(l)  max
l

{z(x)(l)}. (E.4)

Theorem 1. Given n logit vector maps z1, ..., zn and label maps S1, ..., Sn, the optimal temperature values of temperature
scaling (TS), image-based temperature scaling (IBTS) and local temperature scaling (LTS) to the following NLL minimization
problem

min
↵i(x)

�
nX

i=1

X

x2⌦

log
⇣
�SM

�
↵i(x)zi(x)

�(Si(x))
⌘

subject to ↵i(x) � 0

(E.5)

are
(

↵⇤ = 0, if
Pn

i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤ > 0 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤zi(x)

�(l)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))

o
, otherwise

(
↵⇤
i = 0, if

P
x2⌦ zi(x)(Si(x))  1

L

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤
i > 0 |

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤
i zi(x)

�(l)
=
P

x2⌦ zi(x)(Si(x))
o
, otherwise

(
↵i(x)⇤ = 0, if zi(x)(Si(x))  1

L

PL
l=1 zi(x)(l)n

↵i(x)⇤ > 0 |
PL

l=1 zi(x)(l)�SM

�
↵i(x)⇤zi(x)

�(l)
= zi(x)(Si(x))

o
, otherwise

,

(E.6)

where

(TS): ↵i(x) := ↵, 8i, x, and T :=
1

↵
, T 2 R+

(IBTS): ↵i(x) := ↵i, 8x, and Ti :=
1

↵i
, Ti 2 R+

(LTS): ↵i(x) := ↵i(x), and Ti(x) :=
1

↵i(x)
, Ti(x) 2 R+.

(E.7)

Proof. For TS, Let

F(↵) = �
nX

i=1

X

x2⌦

log
⇣
�SM

�
↵zi(x)

�(Si(x))
⌘
. (E.8)

Taking the derivative w.r.t. ↵ we obtain

@F(↵)

@↵
= �

nX

i=1

X

x2⌦

⇣
zi(x)(Si(x)) �

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘ (E.9)

Case 1: If
Pn

i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l), we have @F(↵)

@↵ |↵=0� 0. With Lemma 1, F(↵) is a
monotonic increasing function. This indicates the minimum value is achieved at ↵ = 0.
Case 2: If

Pn
i=1

P
x2⌦ zi(x)(Si(x)) > 1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l). With Lemma 1 we have @F(↵)

@↵ |↵=0< 0

and @F(↵)
@↵ |↵!+1� 0. From the intermediate value theorem and Lemma 1, we know there exists a unique ↵⇤

({↵⇤ > 0 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤zi(x)

�(j)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))}) such that @F(↵)

@↵ |↵=↵⇤= 0. This ↵⇤

is the point where F(↵) reaches the minimum value.

For IBTS, let

F(↵i) = �
nX

i=1

X

x2⌦

log
⇣
�SM

�
↵izi(x)

�(Si(x))
⌘
. (E.10)

Taking the derivative w.r.t. ↵i, we obtain

@F(↵i)

@↵i
= �

X

x2⌦

⇣
zi(x)(Si(x)) �

LX

l=1

zi(x)(l)�SM

�
↵izi(x)

�(l)⌘
, 8i. (E.11)

Case 1: If
P

x2⌦ zi(x)(Si(x))  1
L

P
x2⌦

PL
l=1 zi(x)(l), we have @F(↵i)

@↵i
|↵i=0� 0. With Lemma 1, F(↵i) is a monotonic

increasing function. This indicates the minimum value is achieved at ↵i = 0.
Case 2: If

P
x2⌦ zi(x)(Si(x)) > 1

L

P
x2⌦

PL
l=1 zi(x)(l). With Lemma 1 we have @F(↵i)

@↵i
|↵i=0< 0 and

@F(↵i)
@↵i

|↵i!+1� 0. From the intermediate value theorem and Lemma 1, we know there exists a unique ↵⇤
i

({↵⇤
i > 0 |

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤
i zi(x)

�(j)
=
P

x2⌦ zi(x)(Si(x))}) such that @F(↵i)
@↵i

|↵i=↵⇤
i
= 0. This ↵⇤

i is
the point where F(↵i) reaches the minimum value.

For LTS, let

F(↵i(x)) = �
nX

i=1

X

x2⌦

log
⇣
�SM

�
↵i(x)zi(x)

�(Si(x))
⌘
. (E.12)

Taking the derivative w.r.t. ↵i(x), we obtain

@F(↵i(x))

@↵i(x)
= �

⇣
zi(x)(Si(x)) �

LX

l=1

zi(x)(l)�SM

�
↵i(x)zi(x)

�(l)⌘
, 8i, x. (E.13)

Case 1: If zi(x)(Si(x))  1
L

PL
l=1 zi(x)(l), we have @F(↵i(x))

@↵i(x)
|↵i(x)=0� 0. With Lemma 1, F(↵i(x)) is a monotonic

increasing function. This indicates the minimum value is achieved at ↵i(x) = 0.
Case 2: If zi(x)(Si(x)) > 1

L

PL
l=1 zi(x)(l). With Lemma 1 we have @F(↵i(x))

@↵i(x)
|↵i(x)=0< 0 and @F(↵i(x))

@↵i(x)
|↵i(x)!+1�

0. From the intermediate value theorem and Lemma 1, we know there exists a unique ↵i(x)⇤ ({↵i(x)⇤ > 0 |
P

x2⌦

PL
l=1 zi(x)(l)�SM

�
↵i(x)⇤zi(x)

�(j)
=
P

x2⌦ zi(x)(Si(x))}) such that @F(↵i(x))
@↵i(x)

|↵i(x)=↵i(x)⇤= 0. This ↵i(x)⇤ is
the point where F(↵i(x)) reaches the minimum value.

Remark. The original temperature scaling method defines T instead of ↵ in Theorem 1. T and ↵ are exchangeable via
T = 1

↵ . Here we use ↵ to make the proof readable and easy to follow. Furthermore, the definition of temperature scaling
requires the temperature value T > 0. By using ↵, we require ↵ � 0 with ↵ ! 0 when T ! +1.

E.2. Overconfidence and Underconfidence
One indication of overconfidence for semantic segmentation is that the NLL is greater than or equal to the entropy on the
testing dataset (and also the validation dataset) (see §3.5 for a detailed explanation). As demonstrated by [52], this greater-
than relationship is mainly because the network gradually becomes more and more confident on its incorrect predictions.
Mathematically, before calibration, we have the following relationship on the validation (or testing) dataset:

�
nX

i=1

X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘
� �

nX

i=1

X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘
. (E.14)

Furthermore, Eq. (E.14) leads to

�
nX

i=1

X

x2⌦

h
zi(x)(Si(x)) + log

⇣ LX

l=1

exp(zi(x)(l))
⌘i

� �
nX

i=1

X

x2⌦

h LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l) (E.15)

+
LX

l=1

�SM

�
zi(x)

�(l)

| {z }
=1

log
⇣ LX

l=1

exp(zi(x)(l))
⌘i

�
nX

i=1

X

x2⌦

h
zi(x)(Si(x)) +

XXXXXXXXXX
log
⇣ LX

l=1

exp(zi(x)(l))
⌘i

� �
nX

i=1

X

x2⌦

h LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l) (E.16)

+
XXXXXXXXXX
log
⇣ LX

l=1

exp(zi(x)(l))
⌘i

nX

i=1

X

x2⌦

zi(x)(Si(x)) 
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
. (E.17)

Eq. (E.17) is where the idea of the TS constraint in Eq. (E.40) is coming from. Similarly, if we assume

�
X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘
� �

X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘ 8i (E.18)

� log
⇣
�SM

�
zi(x)

�(Si(x))
⌘
� �

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘ 8i, x, (E.19)

we get

X

x2⌦

zi(x)(Si(x)) 
X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
, 8i (E.20)

zi(x)(Si(x)) 
LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
, 8i, x. (E.21)

Hence, Eq. (E.20) is where the idea of the IBTS constraint in Eq. (E.40) is coming from and Eq. (E.21) is where the idea of
the LTS constraint in Eq. (E.40) is coming from.

Definition 4. For semantic segmentation, a model is overconfident for the predicted probabilities in n validation images if

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘  �
nX

i=1

X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or
nX

i=1

X

x2⌦

zi(x)(Si(x)) 
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
;

(E.22)

a model is overconfident for the predicted probabilities in a validation image Ii if

�
X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘  �
X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or

X

x2⌦

zi(x)(Si(x)) 
X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
;

(E.23)

a model is overconfident for the predicted probabilities at position x of a validation image Ii if

�
LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘  � log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or

zi(x)(Si(x)) 
LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
.

(E.24)

Furthermore, for underconfidence of semantic segmentation, the NLL is generally less than or equal to the entropy. This
is because, when training is insufficient, for correct predictions we have NLL less than or equal to the entropy while for
incorrect predictions there is no guaranteed relationship between NLL and entropy. Besides, the majority of the pixel/voxel
label predictions for a semantic segmentation are correct after the network has been trained a certain period of time (before
overconfidence). Hence, NLL will is expected to be less than or equal to the entropy on average during the underconfident
stage. Thus we have the following constraints during underconfidence,

nX

i=1

X

x2⌦

zi(x)(Si(x)) �
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l) (E.25)

X

x2⌦

zi(x)(Si(x)) �
X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
, 8i (E.26)

zi(x)(Si(x)) �
LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
, 8i, x. (E.27)

Eq. (E.25), Eq. (E.26), and Eq. (E.27) are the prototypes of the constraints for TS, IBTS, LTS in Theorem 3.

Definition 5. For semantic segmentation, a model is underconfident for the predicted probabilities in n validation images if

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘ � �
nX

i=1

X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or
nX

i=1

X

x2⌦

zi(x)(Si(x)) �
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
;

(E.28)

a model is underconfident for the predicted probabilities in a validation image Ii if

�
X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘ � �
X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or

X

x2⌦

zi(x)(Si(x)) �
X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
;

(E.29)

a model is underconfident for the predicted probabilities at position x of a validation image Ii if

�
LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘ � � log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or

zi(x)(Si(x)) �
LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
.

(E.30)

Definition 6. For semantic segmentation, a model is balanced for the predicted probabilities in n validation images if

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘
= �

nX

i=1

X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or
nX

i=1

X

x2⌦

zi(x)(Si(x)) =
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
;

(E.31)

a model is balanced for the predicted probabilities in a validation image Ii if

�
X

x2⌦

LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘
= �

X

x2⌦

log
⇣
�SM

�
zi(x)

�(Si(x))
⌘

or

X

x2⌦

zi(x)(Si(x)) =
X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
;

(E.32)

a model is balanced for the predicted probabilities at position x of a validation image Ii if

�
LX

l=1

�SM

�
zi(x)

�(l)
log
⇣
�SM

�
zi(x)

�(l)⌘
= � log

⇣
�SM

�
zi(x)

�(Si(x))
⌘

or

zi(x)(Si(x)) =
LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
.

(E.33)

E.3. Weighted Averaged Logits and Entropy Extremes

Lemma 2. Given n logit vector maps z1, ..., zn, equal probability for all labels is the unique solution q (probability distribu-
tion) to the following entropy maximization problem:

max
q

�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘

subject to q
�
zi(x)

�(l) � 0 8i, x, l
LX

l=1

q
�
zi(x)

�(l)
= 1 8i, x

(E.34)

Proof. We use Lagrangian multipliers to solve the optimization problem. q
�
zi(x)

�(l) � 0 is ignored in the Lagrangian but
the deducted solution satisfies this constraint automatically.
Let �i(x) be the multipliers. The Lagrangian is

L =�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘
+

nX

i=1

X

x2⌦

�i(x)

✓ LX

l=1

q
�
zi(x)

�(l) � 1

◆
. (E.35)

We take the derivative with respect to q
�
zi(x)

�(l) and set it to 0

@L
@q
�
zi(x)

�(l) = �1� log
⇣
q
�
zi(x)

�(l)⌘
+ �i(x) = 0. (E.36)

Thus, we obtain the expression of q
�
zi(x)

�(l) as

q
�
zi(x)

�(l)
= e�i(x)�1. (E.37)

Hence, q
�
zi(x)

�(l) � 0. Since
PL

l=1 q
�
zi(x)

�(l)
= 1 for all i and x, it must satisfy

q
�
zi(x)

�(l)
=

1

L
. (E.38)

Hence the equal probability distribution over all labels is the entropy maximization solution.

Remark. For a classification or semantic segmentation task, equal probability for each label will yield the maximum entropy.

Remark. The minimum entropy lies at extreme points, i.e.

argmin
q

�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘

subject to q
�
zi(x)

�(l) � 0 8i, x, l
LX

l=1

q
�
zi(x)

�(l)
= 1 8i, x

9
>>>>>>>>=

>>>>>>>>;

n
q
�
zi(x)

�(l)
= 1, q

�
zi(x)

�(j)
= 0, (8j 6= i)

o
, 8i (E.39)

E.4. Entropy Extremes Under Constraints

Theorem 2. Given n logit vector maps z1, ..., zn and label maps S1, ..., Sn, temperature scaling (TS), image-based tempera-
ture scaling (IBTS) and local temperature scaling (LTS) are the unique solutions q (probability distribution) to the following
entropy maximization problem with different constraints (A, B or C):

max
q

�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘

subject to q
�
zi(x)

�(l) � 0 8i, x, l
LX

l=1

q
�
zi(x)

�(l)
= 1 8i, x

8
>><

>>:

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l) � "A (A: TS constraint)
P

x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l) � "Bi 8i (B: IBTS constraint)
PL

l=1 zi(x)(l)q
�
zi(x)

�(l) � "Ci (x) 8i, x (C: LTS constraint)

(E.40)

where "A, "Bi and "Ci (x) are the following constants:

"A =
nX

i=1

X

x2⌦

zi(x)(Si(x)) ,

"Bi =
X

x2⌦

zi(x)(Si(x)) ,

"Ci (x) = zi(x)(Si(x)) .

(E.41)

And the corresponding optimal inverse temperature values for TS, IBTS and LTS are

(
↵⇤ = 0, if

Pn
i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤ > 0 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤zi(x)

�(j)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))

o
, otherwise

(
↵⇤
i = 0, if

P
x2⌦ zi(x)(Si(x))  1

L

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤
i > 0 |

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤
i zi(x)

�(j)
=
P

x2⌦ zi(x)(Si(x))
o
, otherwise

(
↵i(x)⇤ = 0, if zi(x)(Si(x))  1

L

PL
l=1 zi(x)(l)n

↵i(x)⇤ > 0 |
PL

l=1 zi(x)(l)�SM

�
↵i(x)⇤zi(x)

�(j)
= zi(x)(Si(x))

o
, otherwise

.

(E.42)

Proof. We use the Karush–Kuhn–Tucker (KKT) conditions to solve the optimization problems. q
�
zi(x)

�(l) � 0 is ignored
for the KKT conditions as the deducted solution satisfies this constraint automatically (i.e., it is inactive).
For constraint A, let ↵, �i(x) be the multipliers. The Lagrangian is

L =�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘�
nX

i=1

X

x2⌦

�i(x)

✓ LX

l=1

q
�
zi(x)

�(l) � 1

◆

� ↵
⇣
"A �

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)⌘
.

(E.43)

Thus, the KKT conditions are

@L
@q
�
zi(x)

�(l) = �1� log
⇣
q
�
zi(x)

�(l)⌘
+ ↵zi(x)(l) � �i(x) = 0 8i, l, x, (E.44)

LX

l=1

q
�
zi(x)

�(l) � 1 = 0 8i, x, (E.45)

"A �
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)  0, (E.46)

↵ � 0, (E.47)

↵
⇣
"A �

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)⌘
= 0. (E.48)

From Eq. (E.44), we obtain the expression of q
�
zi(x)

�(l) as

q
�
zi(x)

�(l)
= e↵zi(x)(l)��i(x)�1. (E.49)

Hence, q
�
zi(x)

�(l) � 0. Since
PL

l=1 q
�
zi(x)

�(l)
= 1 (Eq. (E.45)) for all i and x, it must satisfy

q
�
zi(x)

�(l)
=

e↵zi(x)(l)

PL
j=1 e

↵zi(x)(j)
. (E.50)

From Eq. (E.46), we have

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)
=

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)
e↵zi(x)(l)

PL
j=1 e

↵zi(x)(j)

� "A

=
nX

i=1

X

x2⌦

zi(x)(Si(x)).

(E.51)

Case 1: If
Pn

i=1

P
x2⌦ zi(x)(Si(x)) > 1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l), then we have

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)
=

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)
e↵zi(x)(l)

PL
j=1 e

↵zi(x)(j)

�
nX

i=1

X

x2⌦

zi(x)(Si(x))

>
1

L

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l).

(E.52)

If ↵ = 0, then q
�
zi(x)

�(l)
= 1/L for all i, l and x. Thus, Eq. (E.46) becomes "A�

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l) 1

L  0, which
violates the

Pn
i=1

P
x2⌦ zi(x)(Si(x)) > 1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l) assumption. Hence, ↵ 6= 0.

Furthermore, we have

1

L

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l) <
nX

i=1

X

x2⌦

zi(x)(Si(x)) 
nX

i=1

X

x2⌦

max
l

{zi(x)(l)}, (E.53)

with Lemma 1 and the intermediate value theorem, there must be a unique strictly positive solution ↵⇤ for ↵ such that
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l)
= "A =

Pn
i=1

P
x2⌦ zi(x)(Si(x)). Thus Eq. (E.47) and Eq. (E.48) both hold.

Case 2: If
Pn

i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l).

If ↵ 6= 0, Eq. (E.48) yields
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l)
= "A =

Pn
i=1

P
x2⌦ zi(x)(Si(x)). With Lemma 1 and

intermediate value theorem, there exists a unique non-positive ↵. This violates Eq. (E.47) and the ↵ 6= 0 assumption. Thus,
↵ = 0.
Furthermore, when ↵ = 0, it yields q

�
zi(x)

�(l)
= 1/L for all i, l and x. Take q

�
zi(x)

�(l)
= 1/L into Eq. (E.46), the

inequality holds. Eq. (E.47) and Eq. (E.48) also hold. From Lemma 2, we know that q
�
zi(x)

�(l)
= 1/L is the solution for

entropy maximization of Eq. (E.34). Since Eq. (E.40) is the subproblem of Eq. (E.34), q
�
zi(x)

�(l)
= 1/L also reaches the

entropy maximization of Eq. (E.40).

Overall, the optimal solution is

q
�
zi(x)

�(l)
=

e↵
⇤zi(x)(l)

PL
j=1 e

↵⇤zi(x)(j)
, (E.54)

with
8
<

:
↵⇤ = 0, if

Pn
i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)

{↵⇤ > 0 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l) e↵

⇤zi(x)(l)

PL
j=1 e↵

⇤zi(x)(j)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))}, otherwise

(E.55)

Let T = 1
↵⇤ (↵⇤ ! 0 as T ! +1), then this is the TS solution. Note that T does not depend on i and x, which is the same

as the temperature value in Eq. (3.3).

For constraint B, let ↵i, �i(x) be the multipliers. Then the Lagrangian is

L =�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘�
nX

i=1

X

x2⌦

�i(x)

✓ LX

l=1

q
�
zi(x)

�(l) � 1

◆

�
nX

i=1

↵i

⇣
"Bi �

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)⌘
.

(E.56)

Thus, the KKT conditions are

@L
@q
�
zi(x)

�(l) = �1� log
⇣
q
�
zi(x)

�(l)⌘
+ ↵izi(x)(l) � �i(x) = 0 8i, l, x, (E.57)

LX

l=1

q
�
zi(x)

�(l) � 1 = 0 8i, x, (E.58)

"Bi �
X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)  0 8i, (E.59)

↵i � 0 8i, (E.60)

↵i

⇣
"Bi �

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)⌘
= 0 8i. (E.61)

From Eq. (E.57), we obtain the expression of q
�
zi(x)

�(l) as

q
�
zi(x)

�(l)
= e↵izi(x)(l)��i(x)�1. (E.62)

Hence, q
�
zi(x)

�(l) � 0. Since
PL

l=1 q
�
zi(x)

�(l)
= 1 (Eq. (E.58)) for all i and x, it must have

q
�
zi(x)

�(l)
=

e↵izi(x)(l)

PL
j=1 e

↵izi(x)(j)
, (E.63)

From Eq. (E.59), we have

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)
=
X

x2⌦

LX

l=1

zi(x)(l)
e↵izi(x)(l)

PL
j=1 e

↵izi(x)(j)

� "Bi

=
X

x2⌦

zi(x)(Si(x)).

(E.64)

Case 1: If
P

x2⌦ zi(x)(Si(x)) > 1
L

P
x2⌦

PL
l=1 zi(x)(l), then we have

X

x2⌦

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)
=
X

x2⌦

LX

l=1

zi(x)(l)
e↵izi(x)(l)

PL
j=1 e

↵izi(x)(j)

�
X

x2⌦

zi(x)(Si(x))

>
1

L

X

x2⌦

LX

l=1

zi(x)(l).

(E.65)

If ↵i = 0, then q
�
zi(x)

�(l)
= 1/L for all i, l and x. Thus, Eq. (E.59) becomes "Bi �

P
x2⌦

PL
l=1 zi(x)(l) 1

L  0, which
violates the

P
x2⌦ zi(x)(Si(x)) > 1

L

P
x2⌦

PL
l=1 zi(x)(l) assumption. Hence, ↵i 6= 0.

Furthermore, we have
1

L

X

x2⌦

LX

l=1

zi(x)(l) <
X

x2⌦

zi(x)(Si(x)) 
X

x2⌦

max
l

{zi(x)(l)}, (E.66)

with Lemma 1 and the intermediate value theorem, there must be a unique strictly positive solution ↵⇤
i for ↵i such that

P
x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l)
= "Bi =

P
x2⌦ zi(x)(Si(x)). Thus Eq. (E.60) and Eq. (E.61) both hold.

Case 2: If
P

x2⌦ zi(x)(Si(x)) < 1
L

P
x2⌦

PL
l=1 zi(x)(l).

If ↵i 6= 0, Eq. (E.61) yields
P

x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l)
= "Bi =

P
x2⌦ zi(x)(Si(x)). With Lemma 1 and the

intermediate value theorem, there exists a unique non-positive ↵i. This violates Eq. (E.60) and the ↵i 6= 0 assumption. Thus,
↵i = 0.
Furthermore, when ↵i = 0, it yields q

�
zi(x)

�(l)
= 1/L for all i, l and x. Take q

�
zi(x)

�(l)
= 1/L into Eq. (E.59), the

inequality holds. Eq. (E.60) and Eq. (E.61) also hold. From Lemma 2, we know that q
�
zi(x)

�(l)
= 1/L is the solution for

entropy maximization of Eq. (E.34). Since Eq. (E.40) is the subproblem of Eq. (E.34), q
�
zi(x)

�(l)
= 1/L also reaches the

entropy maximization of Eq. (E.40).

Overall, the optimal solution is

q
�
zi(x)

�(l)
=

e↵
⇤
i zi(x)(l)

PL
j=1 e

↵⇤
i zi(x)(j)

, (E.67)

with 8
<

:

↵⇤
i = 0, if

P
x2⌦ zi(x)(Si(x))  1

L

P
x2⌦

PL
l=1 zi(x)(l)

{↵⇤
i > 0 |

P
x2⌦

PL
l=1 zi(x)(l) e↵

⇤
i zi(x)(l)

PL
j=1 e↵

⇤
i zi(x)(j)

=
P

x2⌦ zi(x)(Si(x))}, otherwise (E.68)

Let Ti =
1
↵⇤

i
(↵⇤

i ! 0 as Ti ! +1), then this is the IBTS solution. Note that Ti does not depend on x, which is the same as
the temperature value in Eq. (3.4).

For constraint C, let ↵i(x), �i(x) be the multipliers. Then the Lagrangian is

L =�
nX

i=1

X

x2⌦

LX

l=1

q
�
zi(x)

�(l)
log
⇣
q
�
zi(x)

�(l)⌘�
nX

i=1

X

x2⌦

�i(x)

✓ LX

l=1

q
�
zi(x)

�(l) � 1

◆

�
nX

i=1

X

x2⌦

↵i(x)
⇣
"Ci (x)�

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)⌘
.

(E.69)

Thus, the KKT conditions are

@L
@q
�
zi(x)

�(l) = �1� log
⇣
q
�
zi(x)

�(l)⌘
+ ↵i(x)zi(x)(l) � �i(x) = 0 8i, x, l, (E.70)

LX

l=1

q
�
zi(x)

�(l) � 1 = 0 8i, x, (E.71)

"Ci (x)�
LX

l=1

zi(x)(l)q
�
zi(x)

�(l)  0 8i, x, (E.72)

↵i(x) � 0 8i, x, (E.73)

↵i(x)
⇣
"Ci (x)�

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)⌘
= 0 8i, x. (E.74)

From Eq. (E.70), we obtain the expression of q
�
zi(x)

�(l) as

q
�
zi(x)

�(l)
= e↵i(x)zi(x)(l)��i(x)�1. (E.75)

Hence, q
�
zi(x)

�(l) � 0. Since
PL

l=1 q(zi(x))(l) = 1 (Eq. (E.71)) for all i and x, it must have

q
�
zi(x)

�(l)
=

e↵i(x)zi(x)(l)

PL
j=1 e

↵i(x)zi(x)(j)
, (E.76)

From Eq. (E.72), we have

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)
=

LX

l=1

zi(x)(l)
e↵i(x)zi(x)(l)

PL
j=1 e

↵i(x)zi(x)(j)

� "Ci (x)

= zi(x)(Si(x)).

(E.77)

Case 1: If zi(x)(Si(x)) > 1
L

PL
l=1 zi(x)(l), then we have

LX

l=1

zi(x)(l)q
�
zi(x)

�(l)
=

LX

l=1

zi(x)(l)
e↵i(x)zi(x)(l)

PL
j=1 e

↵i(x)zi(x)(j)

� zi(x)(Si(x))

>
1

L

LX

l=1

zi(x)(l).

(E.78)

If ↵i(x) = 0, then q
�
zi(x)

�(l)
= 1/L for all i, l and x. Thus, Eq. (E.72) becomes "Ci (x) �

PL
l=1 zi(x)(l) 1

L  0, which
violates the zi(x)(Si(x)) > 1

L

PL
l=1 zi(x)(l) assumption. Hence, ↵i(x) 6= 0.

Furthermore, we have

1

L

LX

l=1

zi(x)(l) < zi(x)(Si(x))  max
l

{zi(x)(l)}, (E.79)

with Lemma 1 and the intermediate value theorem, there must be a unique strictly positive solution ↵i(x)⇤ for ↵i(x) such
that

PL
l=1 zi(x)(l)q

�
zi(x)

�(l)
= "Ci (x) = zi(x)(Si(x)). Thus Eq. (E.73) and Eq. (E.74) both hold.

Case 2: If zi(x)(Si(x)) < 1
L

PL
l=1 zi(x)(l).

If ↵i(x) 6= 0, Eq. (E.74) yields
PL

l=1 zi(x)(l)q
�
zi(x)

�(l)
= "Ci (x) = zi(x)(Si(x)). With Lemma 1 and the intermediate value

theorem, there exists a unique non-positive ↵i. This violates Eq. (E.73) and ↵i(x) 6= 0 assumption. Thus, ↵i(x) = 0.
Furthermore, when ↵i(x) = 0, it yields q

�
zi(x)

�(l)
= 1/L for all i, l and x. Take q

�
zi(x)

�(l)
= 1/L into Eq. (E.72), the

inequality holds. Eq. (E.73) and Eq. (E.74) also hold. From Lemma 2, we know that q
�
zi(x)

�(l)
= 1/L is the solution for

entropy maximization of Eq. (E.34). Since Eq. (E.40) is the subproblem of Eq. (E.34), q
�
zi(x)

�(l)
= 1/L also reaches the

entropy maximization of Eq. (E.40).

Overall, the optimal solution is

q
�
zi(x)

�(l)
=

e↵i(x)
⇤zi(x)(l)

PL
j=1 e

↵i(x)⇤zi(x)(j)
, (E.80)

with
8
<

:
↵i(x)⇤ = 0, if zi(x)(Si(x))  1

L

PL
l=1 zi(x)(l)

{↵i(x)⇤ > 0 |
PL

l=1 zi(x)(l) e↵i(x)⇤zi(x)(l)

PL
j=1 e↵i(x)⇤zi(x)(j)

= zi(x)(Si(x))}, otherwise
(E.81)

Let Ti(x) =
1

↵i(x)⇤
(↵i(x)⇤ ! 0 as Ti(x) ! +1), then this is the LTS solution. Note that this Ti(x) depends on i and x,

which is the same as the temperature value in Eq. (3.6).

Remark. Note that the first two constraints on q(zi(x)) are shared by all three models, while the last constraint varies
across the three models, i.e. A for TS, B for IBTS, and C for LTS. The first two constraints guarantee that q is a probability
distribution while the last constraint makes assumptions on the distributions of the corresponding models. Constraint A
assumes that the average true class logit is less than or equal to the weighted average logit over the entire image space and
all samples. Constraint B requires that the avearge true class logit is less than or equal to the weighted average logit over
the image space. Constraint C specifies that the true class logit is less than or equal to the weighted average logit at each
location of each image. Note that the three constrains are designed under the overconfidence scenario. The order of the
restrictiveness of the constraints is C > B > A, which indicates the model complexity order LTS > IBTS > TS.

Remark. Theorem 2 gives a more general proof. However, when it comes to TS, IBTS and LTS, we do not necessarily need
such strong conditions. Instead we can use the following simplified theorem 2-b.

Theorem 2-b. Given n logit vector maps z1, ..., zn and label maps S1, ..., Sn, the optimal temperature values of temper-
ature scaling (TS), image-based temperature scaling (IBTS) and local temperature scaling (LTS) to the following entropy
maximization problem with different constraints (A, B or C)

max
↵i(x)

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵i(x)zi(x)

�(l)
log
⇣
�SM

�
↵i(x)zi(x)

�(l)⌘

subject to ↵i(x) � 0 8i, x, l
8
>><

>>:

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵i(x)zi(x)

�(l) � "A (A: TS constraint)
P

x2⌦

PL
l=1 zi(x)(l)�SM

�
↵i(x)zi(x)

�(l) � "Bi 8i (B: IBTS constraint)
PL

l=1 zi(x)(l)�SM

�
↵i(x)zi(x)

�(l) � "Ci (x) 8i, x (C: LTS constraint)

(E.82)

where "A, "Bi and "Ci (x) are the following constants:

"A =
nX

i=1

X

x2⌦

zi(x)(Si(x)) ,

"Bi =
X

x2⌦

zi(x)(Si(x)) ,

"Ci (x) = zi(x)(Si(x)) .

(E.83)

are

(
↵⇤ = 0, if

Pn
i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤ > 0 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤zi(x)

�(j)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))

o
, otherwise

(
↵⇤
i = 0, if

P
x2⌦ zi(x)(Si(x))  1

L

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤
i > 0 |

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤
i zi(x)

�(j)
=
P

x2⌦ zi(x)(Si(x))
o
, otherwise

(
↵i(x)⇤ = 0, if zi(x)(Si(x))  1

L

PL
l=1 zi(x)(l)n

↵i(x)⇤ > 0 |
PL

l=1 zi(x)(l)�SM

�
↵i(x)⇤zi(x)

�(j)
= zi(x)(Si(x))

o
, otherwise

.

(E.84)

where

(TS): ↵i(x) := ↵, 8i, x, and T :=
1

↵
, T 2 R+

(IBTS): ↵i(x) := ↵i, 8x, and Ti :=
1

↵i
, Ti 2 R+

(LTS): ↵i(x) := ↵i(x), and Ti(x) :=
1

↵i(x)
, Ti(x) 2 R+.

(E.85)

Proof. We use the Karush-Kuhn-Tucker (KKT) conditions to solve the optimization problems. ↵ � 0 is ignored in the
Lagrangian and later be validated w.r.t. the deducted solution. For TS, Let � be the multiplier, the Lagrangian is

L = �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)
log
⇣
�SM

�
↵zi(x)

�(l)⌘��
⇣ nX

i=1

X

x2⌦

zi(x)(Si(x))�
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘
.

(E.86)

Taking the derivative w.r.t. ↵, we have

@L
@↵

= �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘
log
⇣
�SM

�
↵zi(x)

�(l)⌘

�
nX

i=1

X

x2⌦

h LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘i

| {z }

=
PL

l=1 �SM

�
↵zi(x)

�(l)
zi(x)(l)�

LX

l=1

�SM

�
↵zi(x)

�(l)

| {z }
= 1

PL
j=1 zi(x)(j)�SM

�
↵zi(x)

�(j)
= 0

+ �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)zi(x)(l)
⇣

zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘ (E.87)

= �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘⇣
↵zi(x)(l) � log

� LX

j=1

exp(↵zi(x)(j))
�⌘

+ �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)zi(x)(l)
⇣

zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘ (E.88)

= �↵
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘

+
nX

i=1

X

x2⌦

h LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘i

| {z }
= 0

log
� LX

j=1

exp(↵zi(x)(j))
�

+ �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)zi(x)(l)
⇣

zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘ (E.89)

= (�� ↵)
nX

i=1

X

x2⌦

⇣ LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l) �
� LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)�2⌘
. (E.90)

Thus, the KKT conditions are

@L
@↵

= (�� ↵)
nX

i=1

X

x2⌦

⇣ LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l) �
� LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)�2⌘
= 0 8i, x, (E.91)

nX

i=1

X

x2⌦

zi(x)(Si(x)) �
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)  0, (E.92)

� � 0, (E.93)

�
⇣ nX

i=1

X

x2⌦

zi(x)(Si(x)) �
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘
= 0. (E.94)

By the Cauchy-Schwarz inequality, we have

LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l) �
� LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)�2

=
⇣ LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l)⌘⇣ LX

l=1

�SM

�
↵zi(x)

�(l)⌘

| {z }
= 1

�
⇣ LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘2 (E.95)

�
⇣ LX

l=1

|zi(x)(l)|�SM

�
↵zi(x)

�(l)⌘2 �
⇣ LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘2 (E.96)

� 0 (E.97)

Hence, we have � = ↵ in Eq. (E.91).
Case 1: If

Pn
i=1

P
x2⌦ zi(x)(Si(x)) > 1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l), then we have

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)
=

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)
e↵zi(x)(l)

PL
j=1 e

↵zi(x)(j)

�
nX

i=1

X

x2⌦

zi(x)(Si(x))

>
1

L

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l).

(E.98)

If ↵ = 0, then �SM

�
↵zi(x)

�(l)
= 1/L for all i, l and x. Thus, Eq. (E.92) becomes

Pn
i=1

P
x2⌦ zi(x)(Si(x)) �Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l) 1

L  0, which violates the
Pn

i=1

P
x2⌦ zi(x)(Si(x)) > 1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l) assump-

tion. Hence, ↵ 6= 0.
Furthermore, we have

1

L

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l) <
nX

i=1

X

x2⌦

zi(x)(Si(x)) 
nX

i=1

X

x2⌦

max
l

{zi(x)(l)}, (E.99)

with Lemma 1 and the intermediate value theorem, there must be a unique strictly positive solution ↵⇤ for ↵ such that
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵zi(x)

�(l)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x)). Thus Eq. (E.93) and Eq. (E.94) both hold.

Case 2: If
Pn

i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l).

If ↵ 6= 0, Eq. (E.94) and � = ↵ yields
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)q

�
zi(x)

�(l)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x)). With Lemma 1

and the intermediate value theorem, there exists a unique non-positive ↵. This violates Eq. (E.93) and the ↵ 6= 0 assumption.
Thus, ↵ = 0.
Furthermore, when ↵ = 0, it yields �SM

�
↵zi(x)

�(l)
= 1/L for all i, l and x. Take �SM

�
↵zi(x)

�(l)
= 1/L into Eq. (E.92),

the inequality holds. Eq. (E.93) and Eq. (E.94) also hold. From Lemma 2, we know that �SM

�
↵zi(x)

�(l)
= 1/L is the

solution for entropy maximization of Eq. (E.34). Since Eq. (E.82) is the subproblem of Eq. (E.34), �SM

�
↵zi(x)

�(l)
= 1/L

also reaches the entropy maximization of Eq. (E.82).

Overall, the optimal solution is
8
<

:
↵⇤ = 0, if

Pn
i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)

{↵⇤ > 0 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l) e↵

⇤zi(x)(l)

PL
j=1 e↵

⇤zi(x)(j)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))}, otherwise

(E.100)

Let T = 1
↵⇤ (↵⇤ ! 0 as T ! +1), then this is the TS solution. Note that T does not depend on i and x, which is the same

as the temperature value in Eq. (3.3).

Similarly, for IBTS and LTS, we can get

argmax
↵i

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵izi(x)

�(l)
log
⇣
�SM

�
↵izi(x)

�(l)⌘

=

(
↵⇤
i = 0, if

P
x2⌦ zi(x)(Si(x))  1

L

P
x2⌦

PL
l=1 zi(x)(l)n

↵⇤
i > 0 |

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤
i zi(x)

�(j)
=
P

x2⌦ zi(x)(Si(x))
o
, otherwise

(E.101)

argmax
↵i(x)

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵i(x)zi(x)

�(l)
log
⇣
�SM

�
↵i(x)zi(x)

�(l)⌘

=

(
↵i(x)⇤ = 0, if zi(x)(Si(x))  1

L

PL
l=1 zi(x)(l)n

↵i(x)⇤ > 0 |
PL

l=1 zi(x)(l)�SM

�
↵i(x)⇤zi(x)

�(j)
= zi(x)(Si(x))

o
, otherwise

(E.102)

Theorem 3. Given n logit vector maps z1, ..., zn and label maps S1, ..., Sn, the optimal temperature values of tempera-
ture scaling (TS), image-based temperature scaling (IBTS) and local temperature scaling (LTS) to the following entropy
minimization problem with different constraints (A, B or C)

min
↵i(x)

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵i(x)zi(x)

�(l)
log
⇣
�SM

�
↵i(x)zi(x)

�(l)⌘

subject to ↵i(x) � 0 8i, x, l
8
>><

>>:

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵i(x)zi(x)

�(l)  "A (A: TS constraint)
P

x2⌦

PL
l=1 zi(x)(l)�SM

�
↵i(x)zi(x)

�(l)  "Bi 8i (B: IBTS constraint)
PL

l=1 zi(x)(l)�SM

�
↵i(x)zi(x)

�(l)  "Ci (x) 8i, x (C: LTS constraint)

(E.103)

where "A, "Bi and "Ci (x) are the following constants:

"A =
nX

i=1

X

x2⌦

zi(x)(Si(x)) � 1

L

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l) ,

"Bi =
X

x2⌦

zi(x)(Si(x)) � 1

L

X

x2⌦

LX

l=1

zi(x)(l) ,

"Ci (x) = zi(x)(Si(x)) � 1

L

LX

l=1

zi(x)(l) .

(E.104)

are

n
↵⇤ � 0 |

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵⇤zi(x)

�(j)
=

nX

i=1

X

x2⌦

zi(x)(Si(x))
o
,

n
↵⇤
i � 0 |

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵⇤
i zi(x)

�(j)
=
X

x2⌦

zi(x)(Si(x))
o
,

n
↵i(x)

⇤ � 0 |
LX

l=1

zi(x)(l)�SM

�
↵i(x)

⇤zi(x)
�(j)

= zi(x)(Si(x))
o
.

(E.105)

where

(TS): ↵i(x) := ↵, 8i, x, and T :=
1

↵
, T 2 R+

(IBTS): ↵i(x) := ↵i, 8x, and Ti :=
1

↵i
, Ti 2 R+

(LTS): ↵i(x) := ↵i(x), and Ti(x) :=
1

↵i(x)
, Ti(x) 2 R+.

(E.106)

Proof. For TS, Let

F(↵) = �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)
log
⇣
�SM

�
↵zi(x)

�(l)⌘
. (E.107)

Taking the derivative w.r.t. ↵, we have

@F(↵)

@↵
= �

nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘
log
⇣
�SM

�
↵zi(x)

�(l)⌘

�
nX

i=1

X

x2⌦

h LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘i

| {z }

=
PL

l=1 �SM

�
↵zi(x)

�(l)
zi(x)(l)�

LX

l=1

�SM

�
↵zi(x)

�(l)

| {z }
= 1

PL
j=1 zi(x)(j)�SM

�
↵zi(x)

�(j)
= 0

(E.108)

= �
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘⇣
↵zi(x)(l) � log

� LX

j=1

exp(↵zi(x)(j))
�⌘

(E.109)

= �↵
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘

+
nX

i=1

X

x2⌦

h LX

l=1

�SM

�
↵zi(x)

�(l)⇣zi(x)(l) �
LX

j=1

zi(x)(j)�SM

�
↵zi(x)

�(j)⌘i

| {z }
= 0

log
� LX

j=1

exp(↵zi(x)(j))
�

(E.110)

= �↵
nX

i=1

X

x2⌦

⇣ LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l) �
� LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)�2⌘
. (E.111)

By the Cauchy-Schwarz inequality, we have

LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l) �
� LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)�2

=
⇣ LX

l=1

�
zi(x)(l)

�2
�SM

�
↵zi(x)

�(l)⌘⇣ LX

l=1

�SM

�
↵zi(x)

�(l)⌘

| {z }
= 1

�
⇣ LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘2 (E.112)

�
⇣ LX

l=1

|zi(x)(l)|�SM

�
↵zi(x)

�(l)⌘2 �
⇣ LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l)⌘2 (E.113)

� 0 (E.114)

Since ↵ � 0, finally we get
@F(↵)

@↵
 0. (E.115)

Thus F(↵) is monotonicly decreasing w.r.t. ↵.

Furthermore, we have the following relations by definition

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵zi(x)

�(l) 
nX

i=1

X

x2⌦

zi(x)(Si(x)) (E.116)

1

L

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l) 
nX

i=1

X

x2⌦

zi(x)(Si(x)) 
nX

i=1

X

x2⌦

max
l

{zi(x)(l)} . (E.117)

With Lemma 1 and the intermediate value theorem, there must be a unique non-negative solution ↵⇤ for ↵ such that
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵zi(x)

�(l)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x)). This ↵⇤ is also the maximum ↵ that we can get

without violating the constraints. Because F(↵) is monotonicly decreasing, thus ↵⇤ is the optimal point that minimizes the
entropy, i.e.

argmin
↵

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵zi(x)

�(l)
log
⇣
�SM

�
↵zi(x)

�(l)⌘

=
n
↵⇤ � 0 |

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵⇤zi(x)

�(l)
=

nX

i=1

X

x2⌦

zi(x)(Si(x))
o

(E.118)

Similarly, for IBTS and LTS, we can get

argmin
↵i

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵izi(x)

�(l)
log
⇣
�SM

�
↵izi(x)

�(l)⌘

=
n
↵⇤
i � 0 |

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵⇤
i zi(x)

�(l)
=

nX

i=1

X

x2⌦

zi(x)(Si(x))
o

(E.119)

argmin
↵i(x)

�
nX

i=1

X

x2⌦

LX

l=1

�SM

�
↵i(x)zi(x)

�(l)
log
⇣
�SM

�
↵i(x)zi(x)

�(l)⌘

=
n
↵i(x)

⇤ � 0 |
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵i(x)

⇤zi(x)
�(l)

=
nX

i=1

X

x2⌦

zi(x)(Si(x))
o

(E.120)

Remark. Different from the proof in Theorem 2 where we used KKT conditions, we only used the gradient here and gave a
specific expression for the probability (i.e. softmax of logits) to prove Theorem 3. This kind of proof choice is because (1)
the objective function in Theorem 2 is concave and we want to obtain the maximum; (2) the constraints in Theorem 2 are
strong enough (self-contained) to derive the solution.

E.5. (Local) Temperature Scaling Drives NLL and Entropy to an Equilibrium
Theorem 4. (1) When the to-be-calibrated semantic segmentation network is overconfident, minimizing NLL w.r.t. TS,
IBTS, and LTS results in solutions that are also the solutions of maximizing entropy of the calibrated probability w.r.t.
TS, IBTS and LTS under the condition of overconfidence. (2) When the to-be-calibrated semantic segmentation network
is underconfident, minimizing NLL w.r.t. TS, IBTS, and LTS results in solutions that are also the solutions of minimizing
entropy of the calibrated probability w.r.t. TS, IBTS and LTS under the condition of underconfidence. (3) The post-hoc
probability calibration of semantic segmentation with TS, IBTS and LTS approaches reach an equilibrium between Negative
Log Likelihood (NLL) and entropy for both underconfidence and overconfidence.

Proof. For TS, if overconfident, we have the following relationship from definition 4:

nX

i=1

X

x2⌦

zi(x)(Si(x)) 
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
. (E.121)

To eliminate overconfidence, we need to decrease NLL and increase entropy to probabilistically describe empirically observ-
able segmentation errors (see §3.5 for detailed explanations). From Eq. (E.121), Theorem 2 (or theorem 2-b) and Theorem 1
we know there is a unique optimal ↵⇤

(
↵⇤ = 0, if

Pn
i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)n

0 < ↵⇤  1 |
Pn

i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤zi(x)

�(l)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x))

o
, otherwise

(E.122)

that drives the NLL to minimum point and the entropy to maximum point simultaneously. Besides, at the optimal point, NLL
equals to entropy, thus reaching an equilibrium. And the overconfidence state is transferred to a balanced state
8
<

:
�
Pn

i=1

P
x2⌦

PL
l=1

1
L log

⇣
1
L

⌘
= �

Pn
i=1

P
x2⌦ log

⇣
1
L

⌘
, if
Pn

i=1

P
x2⌦ zi(x)(Si(x))  1

L

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)

Pn
i=1

P
x2⌦

PL
l=1 zi(x)(l)�SM

�
↵⇤zi(x)

�(l)
=
Pn

i=1

P
x2⌦ zi(x)(Si(x)), otherwise.

(E.123)
If underconfident, we have the following relationship from definition 5:

nX

i=1

X

x2⌦

zi(x)(Si(x)) �
nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
zi(x)

�(l)
. (E.124)

To eliminate underconfidence, we need to decrease NLL and decrease entropy to probabilistically describe empirically ob-
servable segmentation errors. From Eq. (E.124), Theorem 3 and Theorem 1 we know there is a unique optimal ↵⇤

n
↵⇤ � 1 |

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵⇤zi(x)

�(l)
=

nX

i=1

X

x2⌦

zi(x)(Si(x))
o

(E.125)

that drives the NLL to minimum point and the entropy to minimum point simultanously. Besides, at the optimal point, NLL
equals to entropy, thus reaching an equilibrium. And the underconfidence state is transferred to a balanced state

nX

i=1

X

x2⌦

LX

l=1

zi(x)(l)�SM

�
↵⇤zi(x)

�(l)
=

nX

i=1

X

x2⌦

zi(x)(Si(x)) (E.126)

Overall, TS post-hoc probability calibration makes NLL and entropy reach an equilibrium for the validation dataset under
both the underconfidence and overconfidence scenarios.

Similarly, IBTS and LTS post-hoc probability calibrations also make NLL and entropy reach an equilibrium for each image
and for each location respectively under both the underconfident and overconfident scenarios.

F. Evaluation Metrics for Semantic Segmentation
This section introduces evaluation metrics for calibration and segmentation.

Reliability Diagram. Reliability diagrams are commonly used as visual representations of calibration perfor-
mance [11, 53, 56]. A reliability diagram is derived from the definition of perfect calibration where the accuracy and
the confidence are presented separately. If a model is perfectly calibrated, then the diagram should indicate an identity
relationship between the confidence and the accuracy. Otherwise, there is miscalibration in the model. See Fig. 2 and Fig. 5
for examples.

To visually illustrate the relationship of the confidence and the accuracy in Eq. (3.2), one can estimate both the confidence and
the accuracy from finite samples. Specifically, semantic segmentation results can be grouped into N equal-sized probability
intervals (each of size 1/N) to calculate the accuracy of each bin. Let ⌦j be the set of pixels/voxels whose predicted
probabilities fall into the interval �j = (j�1

N , j
N]. Thus, the accuracy [20] of ⌦j can be estimated as

acc(⌦j) =
1

|⌦j |
X

x2⌦j

1(Ŝ(x) = S(x)), (F.1)

where Ŝ(x) and S(x) are the predicted and true labels for pixel/voxel x, 1 is the indicator function. Note that acc(⌦j) is
an unbiased and consistent estimator of P(Ŝ = S|P̂ 2 �j) [20] where P̂ (x) is the probability associated with Ŝ(x) for
pixel/voxel at location x. The average confidence [20] over bin ⌦j can be defined as

conf(⌦j) =
1

|⌦j |
X

x2⌦j

P̂ (x), (F.2)

Thus, acc(⌦j) and conf(⌦j) approximate the left-hand side and right-hand side of Eq. (3.2) for bin ⌦j .

Based on the definition of perfect calibration, a reliability diagram checks whether acc(⌦j) = conf(⌦j) for all
j 2 1, 2, ..., N and plots the quantitative relation in a bar chart.

Expected Calibration Error (ECE). A reliability diagram is only a visual cue to indicate the performance of model cali-
bration: it does not reflect the number of pixels/voxels in each bin. Thus, to account for such variations of the number of
samples in a bin, it has been suggested [54] to use a scalar value to summarize the overall calibration performance. The
expected calibration error [54] uses the expectation between confidence and the accuracy to indicate the magnitude of the
miscalibration. More precisely,

ECE =
NX

j=1

|⌦j |
⌦⇤

|acc(⌦j)� conf(⌦j)|, (F.3)

where ⌦⇤ =
PN

j |⌦j | is the total number of pixels/voxels. The difference between acc and conf for a given bin represents
the calibration gap.

Maximum Calibration Error (MCE). The maximum calibration error [54] measures the worst-case deviation between the
confidence and the accuracy. This is extremely important in high-risk applications where reliable confidence prediction is
crucial for decision making. Specifically,

MCE = max
j2{1,...,N}

|acc(⌦j)� conf(⌦j)| . (F.4)

Note that both the ECE and the MCE are closely related to the reliability diagram. The ECE is a weighted average of all
gaps across all bins while the MCE is the largest gap.

Static Calibration Error (SCE). The ECE is computed by only using the predicted label’s probability, which does not
consider information obtained for other labels. The static calibration error (SCE) [57] has therefore been proposed for the
multi-label setting, which extends ECE by separately computing the calibration error within a bin for each label followed by
averaging across all bins. More precisely, the SCE is defined as

SCE =
X

l2L

NX

j=1

|⌦j,l|
|L|⌦⇤

|acc(⌦j,l)� conf(⌦j,l)|, (F.5)

where L is the set of labels, ⌦j,l is the subset of pixels/voxels for label l in bin ⌦j .

Adaptive Calibration Error (ACE). Another weakness of ECE is that the number of pixels/voxels in each bin varies a lot
among different bins, posing a bias-variance tradeoff for choosing the number of bins [57]. This motivates the introduction

of the adaptive calibration error (ACE) [57]. Specifically, ACE uses an adaptive scheme which separates the bin intervals so
that each bin contains an equal number of pixels/voxels. Specifically,

ACE =
X

l2L

RX

r=1

1

|L|R |acc(⌦r,l)� conf(⌦r,l)|, (F.6)

where R is the number of equal-frequency bins, ⌦r is the r-th sorted bin which contains ⌦⇤/R pixels/voxels. ⌦r,l is the
subset of pixels/voxels for label l in the r-th bin ⌦r.

Avgerage Surface Distance (ASD). ASD is the symmetric average surface distance (usually in millimeter (mm)) between
each predicted segmentation label and the true segmentation label. The distance between a point p on a gold-standard or
ground-truth surface @S(l) and the predicted surface @Ŝ(l) with respect to label l is given by the minimum of the Euclidean
norm, i.e. d(p, @Ŝ(l)) = minp̂2@Ŝ(l) ||p� p̂||2, where p̂ is a point on surface @Ŝ(l). Hence symmetric average surface distance
is defined as

ASD =
1

|L|
X

l2L

1

|@S(l)|+ |@Ŝ(l)|

✓ X

p2@S(l)

d(p, @Ŝ(l)) +
X

p̂2@Ŝ(l)

d(p̂, @S(l))

◆!
. (F.7)

Surface Dice (SD). SD is the averaged Dice score between the segmented label surface and the true label surface at a given
tolerance (we use 1 mm). This tolerance captures that a point p may still be counted as being on the surface @Ŝ(l) if the
distance is at or below the tolerance, i.e. d(p, @Ŝ(l))  tolerance. Formally, the averaged surface Dice score is defined as

SD =
1

|L|
X

l2L

2|{p|d(p, @S(l))  ✏, d(p, @Ŝ(l))  ✏}|
|{p|d(p, @S(l))  ✏}|+ |{p|d(p, @Ŝ(l))  ✏}|

, (F.8)

where ✏ is the tolerance threshold, and | · | is the Cardinality of the set.
95% Maximum Distance (95MD). 95MD is the 95th percentile of the symmetric distance between the segmented label
volume and the true label volume. The definition is

95MD =
1

|L|
X

l2L

✓
95%Percentile

n
..., d(p, Ŝ(l)), ..., d(p̂, S(l)), ...

o
8p 2 S(l), p̂ 2 Ŝ(l)

◆
. (F.9)

Volume Dice (VD). VD is the average Dice score over segmented labels (excluding the background). This is a commonly
used metric to determine the success of segmentation in the field of medical image analysis. It is defined as

V D =
1

|L|
X

l2L

2|S(l) \ Ŝ(l)|
|S(l)|+ |Ŝ(l)|

. (F.10)

G. Example of Boundary Region and All Region
Fig. 6 shows an example of the Boundary region and the All region for a 2D slice of a 3D MR brain image. The Boundary
region is created with boundaries of labels and voxels that are up to 2 voxels away from boundary voxels. The All region
contains label regions excluding the background and the Boundary region. Note that in the multi-atlas segmentation label
fusion experiment, the boundary region of the VoteNet+ ground-truth labels is very sparse and thin. Thus, we use the
Boundary region and the All region of the original segmentation labels of the magnetic resonance (MR) images instead. This
is the same evaluation approach as for the U-Net segmentation experiment.

H. Patch Size vs Metrics Results
Fig. 7 shows the results of Local-Avg for different metrics with different patch sizes. Note that the Local-Avg and Local-Max
results reported in Tab. 1 are for a patch size of 72⇥72 (or 72⇥72⇥72 in 3D). We observe that the probability calibration
performance tends to be worse for smaller patch sizes. This is expected as patch variations (also the differences of patch-
based multi-class probability distributions) are very significant across patches when patch sizes are small. LTS can improve
the calibration performance over TS and IBTS, because it can capture spatially varying effects.

Figure 6: Illustration of Boundary region and All region of an MR brain image from the LPBA40 dataset in 2D. Left two columns:
image and corresponding label map. Right two columns: Boundary region and All region. The Boundary region is usually where mis-
segmentations and mis-calibrations occur. The All region enlarges the label region to include the Boundray region, it thus captures an
evaluation region which excludes almost all background of an image.

Figure 7: Local-Avg results LPBA40 and CamVid experiments for different patch sizes. UN denotes uncalibrated results. In general, the
smaller the patch size the worse the performance. Besides, LTS works best for most metrics.

I. Dataset Variations
Image variations are different for different datasets. Fig. 8 illustrates such variations. COCO using an FCN is the most
complex dataset, followed by CamVid using Tiramisu, LPBA40 using a UNet and finally LPBA40 combined with VoteNet+.
The quantitative results of the metrics in Tab. 1 follows the same pattern: with the results for COCO using an FCN the
weakest and the results for LPBA40 using VoteNet+ the best.

J. Additional Quantitative Results
Additional quantitative results are provided in Tab. 3. The results are in line with the conclusions we obtain in §4, i.e. LTS
works significantly better than TS [20], isotonic Regression (IsoReg) [68], ensemble temperature scaling (ETS) [69], vector
scaling (VS) [20], and Dirichlet calibration with off-diagonal regularization (DirODIR) [34].

K. Multi-atlas Segmentation and Joint Label Fusion
We give a brief overview of multi-atlas segmentation (MAS) [26] and label fusion. Let TI represents the target image that
needs to be segmented. Denote the n atlas images and their corresponding manual segmentations as A1 = (Ai

I , A
i
S), A

2 =
(A2

I , A
2
S), ..., A

n = (An
I , A

n
S). MAS first employs a reliable deformable image registration method to warp all atlas images

into the space of the target image TI , i.e. Ãi = (Ãi
I , Ã

i
S), i = 1, ..., n. Each Ãi

S is considered as a candidate segmentation

Figure 8: An example of images and labels in different datasets for different experiments. COCO is the most complex dataset and contains
different kinds of natural images. CamVid is mainly focused on street scenes. LPBA40 is a dataset of 3D brain MR images. Note
that images for UNet are affine pre-registered to a common atlas space while images for VoteNet+ are registered to a target image via a
deformable registration. Thus image variations of VoteNet+ experiment are less than that for the UNet experiment.

for TI . Finally, a label fusion method [26] G is used to produce the final estimated segmentation T̂S for TI , i.e.

T̂S = G (Ã1, Ã2, ..., Ãn, TI). (K.1)

The goal of label fusion is to use all the information from each individual candidate segmentation to generate a consensus
segmentation that is better than any individual candidate segmentation. One of the most common and popular approaches of
label fusion is weighted voting at each pixel/voxel of the target image, i.e.

T̂S(x) = argmax
l2L

nX

i=1

wi
x · 1[Ãi

S(x) = l], (K.2)

where l 2 L = {0, . . . ,K} is the set of labels (K structures; 0 indicating background), 1[·] is the indicator function, and
wi

x is the weight that associates with the i-th atlas candidate segmentation Ãi
S at position x. There are a lot of possible

Dataset Method
ECE(%)# MCE(%)# SCE(%)# ACE(%)#

All Boundary Local-Avg All Boundary Local-Avg All Boundary Local-Avg All Boundary Local-Avg
[Local-Max] [Local-Max] [Local-Max] [Local-Max]

Tiramisu
CamVid

(233)

UC 7.79(4.94) 22.79(5.76) 9.23(10.63) 22.64(12.72) 30.42(10.65) 30.33(16.63) 9.91(5.02) 24.62(5.69) 13.16(11.72) 9.90(5.01) 24.43(5.75) 13.15(11.73)
[25.35(12.80)] [56.15(14.61)] [30.60(12.48)] [30.60(12.46)]

IsoReg [68] 3.77(3.71) 16.86(5.99) 7.79(8.56) 18.19(11.70) 24.59(10.00) 27.66(15.89) 9.91(3.86) 19.89(5.65) 13.94(10.71) 10.07(3.85) 19.72(5.70) 14.08(10.74)
[21.18(12.73)] [40.66(20.14)] [29.79(12.51)] [29.92(12.45)]

VS [20] 5.85(4.27) 17.95(6.46) 11.24(11.11) 21.14(8.44) 32.25(12.68) 38.47(18.10) 10.84(5.56) 22.84(5.62) 14.90(12.59) 10.80(5.55) 22.39(5.73) 14.83(12.62)
[24.97(14.50)] [44.92(19.20)] [31.13(14.99)] [31.01(14.95)]

ETS [69] 3.71(3.65) 16.28(6.08) 7.76(8.46) 17.63(10.33) 23.06(9.25) 27.63(15.94) 9.98(3.85) 19.48(5.62) 14.05(10.70) 10.12(3.84) 19.30(5.67) 14.14(10.72)
[20.86(12.73)] [41.09(20.13)] [29.78(12.46)] [29.85(12.42)]

DirODIR [34] 6.63(5.51) 25.32(8.14) 11.79(13.66) 15.77(8.27) 34.92(11.45) 33.54(19.77) 12.42(7.33) 29.01(7.26) 17.33(16.00) 12.37(7.34) 28.84(7.33) 17.32(16.00)
[25.01(16.57)] [43.56(22.37)] [32.75(18.49)] [32.66(18.42)]

TS [20] 3.45(3.52) 12.66(5.43) 7.31(7.72) 16.02(11.09) 23.57(12.88) 27.29(16.23) 9.42(3.90) 17.85(4.55) 13.50(10.14) 9.44(3.92) 17.61(4.59) 13.50(10.17)
[17.69(11.91)] [37.25(18.98)] [27.72(11.37)] [27.76(11.33)]

IBTS 3.63(3.65) 12.57(6.07) 7.25(7.67) 16.01(10.21) 23.24(13.00) 27.04(15.94) 9.47(3.89) 17.98(4.88) 13.48(10.12) 9.49(3.91) 17.75(4.92) 13.48(10.16)
[17.60(11.91)] [37.61(19.27)] [27.69(11.38)] [27.76(11.33)]

LTS 3.40(3.59) 11.80(5.20) 6.89(7.64) 12.44(7.48) 22.17(9.53) 27.64(16.67) 8.76(4.05) 17.77(4.26) 12.66(10.04) 8.73(4.03) 17.32(4.32) 12.61(10.07)
[16.61(11.81)] [37.92(20.47)] [26.78(11.22)] [26.76(11.22)]

MMCE [36] 4.45(4.03) – – 18.83(10.82) – – 8.59(5.98) – – 8.50(5.00) – –
[–] [–] [–] [–]

MMCE [36]+LTS 4.15(3.54) – – 17.98(10.69) – – 7.28(3.80) – – 7.17(3.84) – –
[–] [–] [–] [–]

FL [52] 3.47(3.11) 8.68(5.45) 9.01(7.19) 14.77(13.28) 17.62(13.53) 28.37(15.86) 7.46(3.43) 14.08(4.49) 14.09(9.78) 7.43(3.45) 13.63(4.57) 14.06(9.83)
[13.84(11.67)] [33.33(18.08)] [23.60(12.11)] [23.62(12.05)]

FL [52]+LTS 3.13(3.64) 11.06(5.55) 6.96(8.21) 14.51(11.07) 19.61(9.82) 26.91(16.06) 6.78(4.05) 15.28(4.76) 11.85(10.69) 6.73(4.05) 14.76(4.84) 11.83(10.73)
[12.66(12.87)] [32.27(19.08)] [22.04(13.05)] [22.10(12.96)]

Table 3: Calibration results for Tiramisu semantic segmentation model on CamVid dataset. Results are reported in mean(std) format. The
number of testing samples are listed in parentheses underneath the dataset name. UC denotes the uncalibrated result. # denotes that lower
is better. Best results are bolded and green indicates statistically significant differences w.r.t. FL+LTS. Note that due to GPU memory
limits, results of MMCE and MMCE+LTS are for downsampled images, thus can not be directly compared with other methods. The goal
of including them is to show that LTS can improve MMCE. LTS generally achieves the best performance on almost all metrics in the All
region, Boundary region and Local region.

weighting schemes. For example, majority voting (MV) and plurality voting (PV) [21, 24] are the simplest ones that assume
each atlas contributes with equal reliability to the estimate of the target segmentation, i.e. wi

x is a constant value for all i
and x. Moving forward, spatially varying weighted voting (SVWV) [2, 10, 61] relaxes the assumption to allow for spatially
varying weights, i.e. wi

x can be different for i and x. One simple way to estimate the weight wi
x is to set it as the probability

of Ãi
S(x) = TS(x), i.e. wi

x = p(Ãi
S(x) = TS(x)). Though SVWV significantly improves the performance over MV and PV,

it fails to consider the situation that atlases may make correlated errors. Thus, joint label fusion (JLF) [64] has been proposed
which down-weights pairs of atlases that consistently make similar errors. Specifically, JLF tries to find the optimal weights
!i
x by minimizing the expected error between T̂S(x) and the true segmentation TS(x):

E
h
(TS(x)� T̂S(x))

2
i
. (K.3)

Thus, label fusion weights can be computed from Eq. (K.4) by minimizing the total expectation of segmentation errors of
Eq. (K.3) constrained to

Pn
i=1 !

i
x = 1:

wx =
M�1

x 1n
1tnM�1

x 1n
, (K.4)

where 1n is a vector of all 1 and t is the transpose. wx is the vector of weights and wi
x is its i-th entry (correspond to the

i-th atlas). Mx is a pairwise dependency matrix of size n ⇥ n where each entry Mx(i, j) is the estimated joint probability
that atlas Ãi

S (row) and Ãj
S (column) both provide wrong label suggestions for the target image TI at location x. Mx(i, j) is

approximated as follows:

Mx(i, j) = p(Ãi
S(x) 6= TS(x), Ã

j
S(x) 6= TS(x))

⇡ p(Ãi
S(x) 6= TS(x))p(Ã

j
S(x) 6= TS(x))

= (1� p(Ãi
S(x) = TS(x)))(1� p(Ãj

S(x) = TS(x))).

(K.5)

Based on the above-mentioned label fusion approaches, the segmentation accuracy of MAS relies heavily on the accuracy of
estimating the probability of the i-th atlas having the same label as the target image, i.e. p(Ãi

S(x) = TS(x)). Estimation of
p(Ãi

S(x) = TS(x)) is rarely explored. Typically, patch-based sum of squared differences (SSD) between image intensities

are used [2, 10, 61, 64]. Recently, deep convolutional networks based approaches [12, 13, 66] have been proposed to improve
over the SSD intensity measures and have achieved great success. Here, specifically, we employ a deep convolutional
neural network called VoteNet+ [13] to estimate the probabilities. We then conduct experiments for probability calibration
to determine how much improving the calibration can improve the joint label fusion result and in turn the segmentation
accuracy.

