
A. Geodesic distance and Gaussian Distribu-
tions

In this section we explain how to interpret Eq. (4) as a
product of independent (nearly) Gaussian distributions. Re-
call that we are attempting to define a distribution pθ(P | z)
over the Lie group SE(3). The key point is to factorize
P ∈ SE(3) into the semidirect product (t, R) ∈ R3⋊SO(3)
of translations and rotations. Assuming a fully factorized
conditional model, we can write

pθ(P | z) = pθ(t | z)pθ(R | z).

We assume the decoder network dθ(z) provides translational
parameters (µt,σ

2
t) and rotational parameters (µR,σ

2
R)

3

from which we define Gaussian distributions on R3 and
SO(3) as follows.

As t ∈ R3, we can use the usual Gaussian distribution:

pθ(t|z) = N (µt,σ
2
t). (13)

We put a Gaussian distribution over R ∈ SO(3) via the Lie
algebra so(3) ≃ R3. First, we sample noise from a Gaussian
distribution over so(3): ϵ ∼ N (0,σ2

R). We then assume that

R = µR exp(ϵ),

where exp: so(3) → SO(3) is the exponential map on the
Lie algebra. It is tempting to think that, using the logarithm
map, log : SO(3) → so(3),

log(µT
RR) = ϵ ∼ N (0,σ2

R).

Unfortunately, this is not the case. The logarithm map on
SO(3) is not surjective; it takes values in the open ball of
radius π contained in R3. To remedy this, one would techni-
cally need to sample ϵ from a wrapped Gaussian distribution
to ensure that it stays within the image of the logarithm map.
In practice, however, a small enough covariance matrix σ2

R

means that sampling outside this sphere is extremely unlikely
to begin with. As such, we are content to assume that

pθ(R | z) ∝ exp(−1

2
|| log(µR(z)

TR)||2σ2
R
).

Note that when the covariance matrix Σ is a
scalar multiple of the identity, then the function
dSO(3)(A,B; Σ) = || log(ATB)||Σ defines a geodesic
distance on SO(3). Therefore, we can write

pθ(P | z) = pθ(t | z)pθ(R | z)

∝ exp(−1

2
||µt − t||2σ2

t
) exp(−1

2
dSO(3)(µR, R;σ2

R)
2)

= exp(−1

2
(||µt − t||2σ2

t
+ dSO(3)(µR, R;σ2

R)
2))

= exp(−1

2
dSE(3)(µP , P ;σ2

P)
2),

3We have suppressed the dependence of the translational and rotational
parameters on both θ and z to simplify the notation

where µP = (µt,µR) ∈ SE(3), σ2
P = diag(σ2

tb;σ
2
R) ∈

R6×6, and the last line follows by Theorem 3 in [48].

B. Implementation Details
Here we provide further details on the implementation

and training of the models.

Decoder. The decoder consists of a linear layer with d
inputs and 256 outputs, followed by a number K of residual
blocks and finally a linear layer with 256 inputs and 132
outputs. A residual block consists of two linear layers with
256 inputs and outputs, each followed by a leaky ReLU
activation function with negative slope 0.01. Each linear
layer in the residual blocks is followed by dropout with
probability 0.2. The output of these two layers is multiplied
by a learned scalar parameter that is initialized to zero [7]
and then added back to the input of the residual block. At
initialization, the decoder is therefore equivalent to a linear
layer with d inputs and 132 outputs (plus a constant if these
layers have bias). Minor detail: we initialize the weights of
the last linear layer with a Normal distribution with scale
0.05, and the bias such that the initial generated poses are
close to a standard “T-pose”.

Encoder for sequences. The first component of the en-
coder is a linear mapping applied to each frame indepen-
dently. This is implemented as a 1D convolutional layer with
kernel size 1 and output channels 128. This is followed by
K/3 residual blocks similar to the ones described above, ex-
cept that they have convolutional layers, and by an average
pooling with kernel size 2 and stride 2. After K/3 more
residual blocks and another downsampling step through av-
erage pooling, the matrix is flattened to a vector of size
512. The output is normalized with layer normalization [6],
passed through a linear layer with 256 outputs, K/3 residual
blocks with linear layers, and finally mapped to a vector of
size 2d that parameterizes the variational distribution.

Optimization. The objective function Eq. (7) is optimized
with the Adam optimizer [29] with learning rate 10−4 and
default parameters, using a batch size of 64 (either 64 static
poses or 64 sequences, depending on the scenario).

C. Additional Results
In Fig. 8 we report the same results as in the main

text, split according to the value of β. Generally, β does
not seem to significantly affect the quantitative metrics
considered here, as most results are within error bars. The
only exception is β = 5 which in some cases might lead to
lower velocity error and acceleration, but possibly slightly
higher position error. Note that, since the lowest value of
β roughly approximates a deterministic model, these results

Figure 8. Experimental results broken down by value of β. Left column: average results over the entire body. Right column: average over
leg joints only. Top to bottom: average position error, velocity error, and join acceleration. Bars and error bars represent the mean and 95%
confidence interval.

suggest that using a vanilla deterministic autoencoder with
our setup might work similarly. A possible interpretation
of this result is that the task considered here is based on
inference and reconstruction, not density estimation or
sample generation, and therefore does not necessarily suffer
from lowering β—the limit being vanilla deterministic
autoencoders. On the other hand, such low values of β will
lead to a poor data fit and inadequate generative models.

This should be taken into consideration e.g. when sampling
from the latent space is of interest.

When looking at the results broken down by latent space
dimensionality in Fig. 9, we observe that d = 15 sometimes
yields worse performance, while the difference between 30
and 60 is generally not significant.

Finally, regarding performance, we remark that the largest
models in this paper have less than 2 million parameters

Figure 9. Experimental results broken down by value of the latent space dimensionality, d. Left column: average results over the entire
body. Right column: average over leg joints only. Top to bottom: average position error, velocity error, and join acceleration. Bars and
error bars represent the mean and 95% confidence interval.

and run at 200Hz on a data center GPU (NVIDIA V100).
Note that this performance is measured when encoding and
decoding a single image, which reduces latency but is highly
suboptimal compared to using larger batches.

