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A. Natural Gradients

Natural Evolution Strategies (NES) [6] adopt the natural
gradients for optimization, because [6] illustrates that the
plain search gradients make the optimization very unstable
when sampling from a Gaussian distribution with the learn-
able mean and covariance matrix. The natural gradient is
defined as

∇̃θJ = F−1∇θJ (θ), (A.1)

where θ denotes the search distribution parameter and F is
Fisher information matrix as

F = Eπ(·|θ)
[
∇θ log π(·|θ)∇θ log π(·|θ)>

]
. (A.2)

In our problem, we could also calculate the Fisher infor-
mation matrices for the search distributions π1(m|θm) and
π2(p|θp). For π1(m|θm), we have

F = Eπ1(m|θm)

[
∇θm log π1(m|θm)∇θm log π1(m|θm)>

]
= Eπ1(m|θm)

[
4(m− g(θm))(m− g(θm))>

]
= 4 · diag (g(θm)(1− g(θm))) ,

where diag(·) denotes the diagonal matrix. If the optimiza-
tion on θm is nearly converged, g(θm) tends to be close to 0
or 1 since the mask m sampled from Bern(g(θm)) should
not change dramatically with different tries. Therefore, the
diagonal elements in F tend to be 0 and those of F−1 tend
to be +∞. Consequently, the optimization would be rather
unstable if we adopt natural gradients.

For π2(p|θp), note that the variance of the Gaussian dis-
tribution is fixed, and thus the Fisher information matrix
becomes I. In this case, the natural gradients are the same
as the plain gradients. Hence, we do not adopt natural gra-
dients for optimization in our problem.

*Corresponding author.

B. Implementation Details and Hyperparame-
ters

The implementation of Neural Cleanse (NC) [5] is based
on the official source code1. The source code of TABOR [2]
was not released by the authors. Thus we implement TA-
BOR based on another (unofficial) implementation2. Our
proposed B3D follows a similar optimization process to NC
but replaces the white-box gradients by the estimated gra-
dients, as detailed in Sec. 3.3. The hyperparameter λ in
Eq. (2) is adjusted dynamically according to the backdoor
attack success rate of several past optimization iterations,
which is also based on the implementation of NC.

In B3D and B3D-SS, we introduce one critical hyperpa-
rameter k (i.e., the number of samples to estimate the gra-
dient), which can affect the performance of backdoor de-
tection. If k is too small, the estimated gradient exhibits
a large variance, making the optimization rather unstable.
Otherwise, if k is too large, the optimization needs more
queries and time. Therefore, we need to choose a suitable k
to have a relatively small variance and make the optimiza-
tion efficient. So we choose k = 50 in the main experiments
and we find that using k ∈ [20, 100] leads to similar results.
The optimization process is not very sensitive to different k.
It can be seen that compared to NC, B3D and B3D-SS re-
quire 100× forward passes in each iteration. Thus the com-
putational complexity of B3D and B3D-SS is higher than
white-box methods, e.g., NC. A future research direction is
to improve the efficiency of black-box backdoor detection.

In B3D-SS, we adopt a set of synthetic samples to per-
form optimization. The quality of the synthetic samples is
also a critical factor to affect the performance of our algo-
rithm. There are two important aspects — the number of
synthetic samples and the generation method of synthetic
samples. Intuitively speaking, more synthetic samples are

1https://github.com/bolunwang/backdoor.
2https://github.com/UsmannK/TABOR.
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beneficial for reverse-engineering the true trigger since the
optimization process would not easily drop into local min-
ima. Empirically, we observe that using thousands of syn-
thetic samples is sufficient for optimization, and thus we
do not try to use more. On the other hand, the generation
method of synthetic samples depends on the datasets. For
CIFAR-10 and GTSRB, we find that using randomly gener-
ated samples from a uniform distribution can help to restore
the true trigger. But for ImageNet, the randomly generated
samples are not helpful since the input dimension is much
higher. Therefore, we adopt synthetic samples generated by
BigGAN to perform optimization. We leave the study on
more choices of synthetic samples in future work.

C. Analysis on NC and B3D for Normal Models

In the experiments, we find that NC wrongly identifies
more normal models as backdoored than B3D and B3D-SS,
especially on CIFAR-10. We provide further analysis in this
section.

Fig. 4 shows an example of the wrong identification of
a normal model by NC trained on CIFAR-10. Because NC
relaxes the masks to be continuous in [0, 1]d, it can be ob-
served that the reversed mask by NC has small amplitude
but covers a large region. In this example, class 1 is iden-
tified as an infected class since the L1 norm of the mask is
smaller than others and is regarded as an outlier among the
masks of all classes. However, this mask does not resemble
the masks of true backdoor patterns. In B3D and B3D-SS,
as we adopt the Bernoulli distribution to model the masks,
the optimized masks tend to be close to 1. Thus B3D and
B3D-SS are less probable to optimize a mask with much
smaller L1 norm for a specific class. As a result, B3D and
B3D-SS are less prone to this problem.

D. Effective Positions of Backdoor Attacks

Although we typically embed a backdoor in a model at a
specific input position, the reversed trigger often locates at a
different position from the original trigger. We deduce that
the backdoored model would learn a distribution of triggers
by generalizing the original one. To validate it, we calculate
the success rates of backdoor attacks by applying the trigger
to all input positions.

Specifically, we randomly choose 5 backdoored models
on CIFAR-10 with 1×1 triggers. For each model, we insert
the trigger into each position of the input and evaluate the
attack success rates (ASR). We visualize the heat maps of
ASR in Fig. 5. It can be seen that a lot of input positions
besides the original one can induce high ASR. Thus we can
conclude that the backdoored model can learn a distribution
of backdoor triggers in various positions, and the backdoor
detection method could converge to either one from the dis-
tribution, which does not necessarily locate at the same po-

sition as the original trigger.

E. Visualization Results on ImageNet
We visualize the original triggers and the reversed trig-

gers optimized by NC, B3D, and B3D-SS on ImageNet in
Fig. 6. It can be seen that the reversed triggers do not re-
semble the original triggers, indicating that the backdoored
models would automatically learn distinctive features from
the triggers rather than remembering the exact patterns.

F. Experiments on More Settings
In this section, we provide additional experiments by

considering more various backdoor attacks and training set-
tings. The results consistently demonstrate the effectiveness
of our proposed methods — B3D and B3D-SS.

F.1. Other Backdoor Attacks

Besides the BadNets approach used in the main paper,
we consider more backdoor attacks including the blended
injection attack [1] and the label-consistent attack [4]. The
blended injection attack adds a 3 × 3 trigger into a random
position of the image, and performs a weighted average of
the original image and the trigger. The blend ratio is set as
0.2. The poison ratio is 10%. We train 50 models by the
blended injection attack. The label-consistent attack does
not alter the ground-truth label of the poisoned input. We
adopt the adversarial manipulation approach to make the
original context hard to learn, as proposed in [4]. The poi-
son ratio is 8% of the whole dataset. We also train 50 mod-
els by the label-consistent attack.

The results of NC, TABOR, B3D, and B3D-SS against
the blended injection and label-consistent attacks are shown
in Table 7. NC achieves 100% and 94% detection accuracy
against the two attacks; TABOR achieves 96% and 94% de-
tection accuracy; B3D achieves 100% and 94% detection
accuracy; while B3D-SS achieves 100% detection accuracy
against both attacks. The results validate the effectiveness
of our proposed approaches against other backdoor attacks
besides BadNets.

F.2. Different Model Architectures

Although we study backdoor attacks and detection using
the ResNet-18 model in Sec. 4, our method can generally be
applied when using other model architectures. To illustrate
this, we further conduct experiments on CIFAR-10 with a
VGG-16 [3] model. The experimental settings are the same
as the experiments in Sec. 4.1 using the ResNet-18 model,
in which we also train 200 models for evaluations.

We present the detailed results in Table 8. Overall, the
backdoor detection accuracy achieves 98.5% by NC, 96.5%
by TABOR, 97.0% by B3D, and 97.5% by B3D-SS. The
results on the VGG-16 model consistently demonstrate the
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Figure 4. Visualization of the reversed masks optimized by NC, B3D, and B3D-SS for all classes of a normal model on CIFAR-10. NC
wrongly identifies the model as backdoored and regards class 1 to be the infected class.

Attack Accuracy ASR Method
Reversed Trigger Detection Results

L1 norm ASR Case I Case II Case III Case IV

Blended Injection 88.36% 100.00%

NC [5]
TABOR [2]
B3D (Ours)
B3D-SS (Ours)

0.499
0.640
0.865
4.320

98.77%
99.00%
98.99%
99.99%

40/50
37/50
36/50
40/50

10/50
11/50
14/50
10/50

0/50
0/50
0/50
0/50

0/50
2/50
0/50
0/50

Label-Consistent 86.70% 99.92%

NC [5]
TABOR [2]
B3D (Ours)
B3D-SS (Ours)

3.092
3.291
3.737
3.783

98.72%
99.19%
98.92%
97.81%

47/50
46/50
46/50
47/50

0/50
1/50
1/50
3/50

0/50
0/50
0/50
0/50

3/50
3/50
3/50
0/50

Table 7. The results of backdoor detection on CIFAR-10 against the blended injection attack [1] and label-consistent attack [4]. We show
the average accuracy and backdoor attack success rates (ASR) of the backdoored models. For the four backdoor detection methods — NC,
TABOR, B3D, and B3D-SS, we report the L1 norm and attack success rates of the reversed trigger corresponding to the target class, as
well as the detection results in four cases.
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Figure 5. The original triggers and the backdoor attack success
rates (ASR) by applying the triggers to different positions in the
input. In the second row, the value of the pixel represents the ASR
at each position, i.e., a white pixel represents the 100% ASR while
a black pixel represents the 0% ASR.

effectiveness of the proposed methods B3D and B3D-SS,
which achieve comparable performance with NC and TA-
BOR.
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Figure 6. Visualization of the original triggers and the reversed
triggers optimized by NC, B3D, and B3D-SS on ImageNet.



Model Accuracy ASR Method
Reversed Trigger Detection Results

L1 norm ASR Case I Case II Case III Case IV

Normal 89.57% N/A

NC [5]
TABOR [2]
B3D (Ours)
B3D-SS (Ours)

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

1/50
1/50
1/50
3/50

49/50
49/50
49/50
47/50

Backdoored
(1× 1 trigger)

88.79% 99.64%

NC [5]
TABOR [2]
B3D (Ours)
B3D-SS (Ours)

0.980
1.014
1.085
9.247

98.67%
99.12%
98.81%
99.52%

41/50
39/50
32/50
25/50

6/50
7/50
14/50
20/50

2/50
0/50
2/50
3/50

1/50
4/50
2/50
2/50

Backdoored
(2× 2 trigger)

88.86% 99.99%

NC [5]
TABOR [2]
B3D (Ours)
B3D-SS (Ours)

2.393
2.475
2.734
6.836

98.69%
98.98%
98.90%
99.18%

46/50
43/50
41/50
31/50

3/50
5/50
7/50
18/50

1/50
0/50
2/50
1/50

0/50
2/50
0/50
0/50

Backdoored
(3× 3 trigger)

88.70% 100.00%

NC [5]
TABOR [2]
B3D (Ours)
B3D-SS (Ours)

3.448
3.192
3.839
5.906

98.60%
99.09%
98.89%
96.72%

44/50
47/50
40/50
34/50

5/50
3/50
7/50
14/50

0/50
0/50
0/50
2/50

1/50
0/50
3/50
0/50

Table 8. The results of backdoor detection on CIFAR-10 with the VGG-16 model architecture. For normal and backdoored models with
different trigger sizes, we show their average accuracy and backdoor attack success rates (ASR). For the four backdoor detection methods
— NC, TABOR, B3D, and B3D-SS, we report the L1 norm and attack success rates of the reversed trigger corresponding to the target
class, as well as the detection results in four cases.

Trigger size Accuracy ASR

1× 1 94.68% 99.67%
2× 2 94.78% 99.99%
3× 3 95.29% 100.00%

Table 9. The accuracy and the backdoor attack success rates (ASR)
of three backdoored models on CIFAR-10 with data augmentation.
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Figure 7. Visualization of the original triggers and the reversed
triggers optimized by B3D of three backdoored models on CIFAR-
10 with data augmentation.

F.3. Data Augmentation

The previous experiments do not adopt data augmenta-
tion during training. However, data augmentation is a com-
mon technique for training DNN models. To investigate the
effects of data augmentation for backdoor attacks and de-
tection, we provide further analysis in this section.

We conduct experiments on CIFAR-10 with the ResNet-
18 model architecture. We train one backdoored model for
each trigger size of 1×1, 2×2, and 3×3 with data augmen-
tation (i.e., horizontal flips and random crops from images

Figure 8. The backdoor attack success rates (ASR) by applying the
trigger to different positions in the input. We study the backdoored
model using the 1 × 1 trigger on CIFAR-10 with data augmenta-
tion.

with 4 pixels padded on each side). The accuracy and the
backdoor attack success rates (ASR) of these models are
shown in Table 9. With data augmentation, the backdoored
models can achieve higher accuracy on clean test data while
preserving near 100% ASR for backdoor attacks. We then
use B3D to perform backdoor detection of these three mod-
els. B3D successfully identifies these models as backdoored
and correctly discovers the true target class. We visualize
the original triggers and reversed triggers in Fig. 7.

Moreover, we suspect that using data augmentation can
make the effective input positions of backdoor attacks much
more, because the poisoned training samples are also aug-
mented such that the trigger will locate at many positions in
the training data. Similar to the experiments in Appendix D,
we use the backdoored model with the 1 × 1 trigger and
show the heat map of ASR of this model in Fig. 8. It can be
seen that the trigger is effective at a lot of positions.
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Figure 9. Visualization of the original trigger and the reversed trig-
gers optimized by B3D of a backdoored model on CIFAR-10 with
two backdoors targeting at class 0 and 1.

F.4. Multiple Infected Classes with Different Trig-
gers

We consider the scenario that multiple backdoors with
different target classes are embedded in a model. We train a
backdoored model on CIFAR-10 with two backdoors target-
ing at class 0 and 1, respectively. The B3D method success-
fully identifies both backdoors, with the reversed triggers
shown in Fig. 9.

F.5. Single Infected Class with Multiple Triggers

We consider the scenario that multiple backdoors with
a single target class are embedded in a model. We train a
backdoored model on CIFAR-10 with two triggers both tar-
geting at class 0. B3D successfully identifies the existence
of backdoor attacks. However, we find that B3D can only
restore the trigger according to one backdoor but fail to re-
cover the trigger tied to the other. We think this is because
that one backdoor is easier to identify than the other when
we perform optimization using an objective function. It also
does not harm the effectiveness of B3D in pointing out the
existence of backdoored models.
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