
HeadGAN: One-shot Neural Head Synthesis and Editing
(supplementary material)

Michail Christos Doukas1,2, Stefanos Zafeiriou1,2, Viktoriia Sharmanska1,3
1Imperial College London, UK 2Huawei Technologies, London, UK 3 University of Sussex, UK

{michail-christos.doukas16, s.zafeiriou, sharmanska.v}@imperial.ac.uk

1. 3DMM fitting
Given a facial image y, our 3DMM fitting stage recov-

ers shape p and camera c parameters. It relies on dense
3D points of the face, which are regressed with RetinaFace-
R501[5] network, pre-trained on WIDER FACE dataset
[17]. We use Procrustes analysis to register the regressed
points with the mean shape x̄ of LSFM 3DMM [3].

Algorithm 1: Fit the 3DMM to a given image.

Input: 3DMM: {Uid,Uexp, x̄}, image: y
/* Regress dense 3D points */
l = RetinaFace(y)
/* Align points to mean shape */
l′ = Procrustes(x̄, l)
/* Merge id. with exp. 3DMM */

U = [Uid⊤;Uexp⊤]⊤

/* Compute Moore-Penrose inverse */

U+ = (U⊤U)−1U⊤

/* Recover shape parameters */

p = U+(l′ − x̄)
/* Compute affine camera matrix */

P = Least squares (lhomog, x̄) ∈ IR3×4

/* Recover camera parameters:
scale, rotation, translation */

c = P to srt(P)
Result: shape parameters p, camera parameters c

2. Objective functions - Training
We train HeadGAN framework, consisting of the Gener-

ator G and the two Discriminators D and Dm, using GAN
Hinge loss [8]. Therefore, the adversarial loss term for G is
given by

Ladv
G = −Epdata

[D(xt, ỹt) +Dm(h(a)
t , ỹmt )], (1)

where xt is the 3D face representation input, h(a)
t is the

input audio feature vector, ỹt is the ”fake” frame gener-

ated by G and ỹm
t the corresponding cropped mouth area

of size 64× 64. Given that during training we perform self-
reenactment, we have access to the ground truth frame yt.
The image Discriminator D is optimised by minimising the
loss

Ladv
D = −Epdata

[ min(0,−1 +D(xt, yt)
−min(0,−1−D(xt, ỹt)].

(2)

and the mouth Discriminator Dm using a similar loss

Ladv
Dm

= −Epdata
[ min(0,−1 +Dm(xt, ymt )

−min(0,−1−Dm(xt, ỹmt )].
(3)

The generative network G is trained by minimising also a
reconstruction loss term between the generated and ground
frames, in the image pixel space

LL1
G = Epdata

[||ỹt − yt||1], (4)

as well as the feature space, using feature maps extracted by
a pre-trained VGG network [7]:

LV GG
G = Epdata

[
∑
l

||V GGl(ỹt)− V GGl(yt)||1]. (5)

Similarly to VGG loss, we use the two Discriminators to
compute visual features from both real and synthetic frames
and compute a feature matching loss LFM

G that was origi-
nally proposed in [16] and has been proven very effective at
increasing the photo-realism of generated samples.

In addition, we apply both L1 and VGG losses on the
warped image ȳref

t , in order to force the dense flow network
F to learn a correct flow from the reference image to the
desired head pose, obtaining the loss terms LL1

F and LV GG
F .

To sum up, the overall objective for G is given as:

LG =Ladv
G + λL1LL1

G + λV GGLV GG
G + λFMLFM

G +

λL1LL1
F + λV GGLV GG

F ,

(6)

with λL1 = 50 and λV GG = λFM = 10. The Discrimi-
nators are optimised under their corresponding adversarial
loss terms

LD = Ladv
D , LDm

= Ladv
Dm

. (7)



3. Architecture Details

3.1. Generator G

Dense flow network F (Table 1). The dense flow network
consists of an encoding and a decoding part. Its encoder
is made up from three convolutional layers, each one with
instance normalization units [14] and ReLU activation func-
tions. The last two convolutions are performed with a stride
of 2, for down-sampling the input twice. The decoder is
equipped with SPADE blocks [11], which are used to ”in-
ject” the 3D face representation xt−k:t (modulation input).
Here we down-sample xt−k:t to match it with the spatial
size of each SPADE layer, similarly to the original work
[11]. We employ two Pixel Shuffle [13] layers, for up-
sampling. Finally, dense flow is calculated with a 7 × 7
convolutional output layer.
Rendering network R (Table 2). Our rendering network
has an encoder-decoder architecture as well. Its encoder
has a similar structure to the encoder of F . The decoder is

Block Output size
Input (256, 256, 6)

7× 7 conv-32 Inst. Norm. ReLU (256, 256, 32)
3× 3 conv-128 Inst. Norm. ReLU (128, 128, 128)
3× 3 conv-512 Inst. Norm. ReLU (64, 64, 512)

SPADE Block (64, 64, 512)
SPADE Block (64, 64, 512)
SPADE Block (64, 64, 512)
Pixel Shuffle (128, 128, 128)

SPADE Block (128, 128, 128)
Pixel Shuffle (256, 256, 32)
7× 7 conv-2 (256, 256, 2)

Table 1: Architecture of dense flow network F .

Block Output size
Input (256, 256, 9)

7× 7 conv-32 Inst. Norm. ReLU (256, 256, 32)
3× 3 conv-128 Inst. Norm. ReLU (128, 128, 128)
3× 3 conv-512 Inst. Norm. ReLU (64, 64, 512)

SPADE Block (64, 64, 512)
AdaIN Block (64, 64, 512)
Pixel Shuffle (128, 128, 128)

SPADE Block (128, 128, 128)
AdaIN Block (128, 128, 128)
Pixel Shuffle (256, 256, 32)

SPADE Block (256, 256, 32)
AdaIN Block (256, 256, 32)
SPADE Block (256, 256, 32)

LReLU 7× 7 conv-3 tanh (256, 256, 3)

Table 2: Architecture of rendering network R.

Instance
Normalisation

3x3 conv - 256

3x3 conv - F 3x3 conv - F

gamma betanorm

(1 + gamma) * norm + beta

SPADE Layer

Input

Modulation input

Output

SPADE
Layer

SPADE Block

Input

Modulation input

OutputLeaky
ReLU 3x3 conv - F SPADE

Layer
Leaky
ReLU 3x3 conv - F

(a) SPADE Block architecture.

Instance
Normalisation Linear Linear

gamma betanorm

(1 + gamma) * norm + beta

AdaIN Layer

Input

Modulation input

Output

AdaIN
Layer

AdaIN Block

Input

Modulation input

OutputLeaky
ReLU 3x3 conv - F AdaIN

Layer
Leaky
ReLU 3x3 conv - F

(b) AdaIN Block architecture

Figure 1: Our SPADE and AdaIN blocks are based on the
SPADE Resnet blocks proposed in [11], but without a resid-
ual component, as we always keep the same number of input
channels F at the output, both on SPADE and AdaIN blocks.

built from alternating SPADE and AdaIN blocks, which are
used to condition synthesis on our multi-scale visual fea-
ture maps and audio feature vectors respectively. We use
Pixel Shuffle layers for up-sampling, since we noticed it
performs better than simple up-sampling operations (e.g.
nearest neighbor, linear, bi-linear). After the last decoding
block, a convolutional layer is placed for the computation
of the synthetic RGB image.

3.2. Discriminators D and Dm

Both D and Dm have a similar architecture to the dis-
criminator presented in [11]. We apply Spectral Normalisa-
tion [9] to all normalisation layers of the Discriminators.

4. Additional results
In Fig. 2 and Fig. 3 we present a few more generated

samples using VoxCeleb test set [10]. Here, we also include
the predicted flow and warped image in the results.



Figure 2: Reconstruction. From left to right: reference, reference 3D face, driving 3D face, flow, warped, generated, driving.



Figure 3: Reenactment. From left to right: reference, reference 3D face, driving 3D face, flow, warped, generated, driving.



5. Evaluation metrics
We quantitatively compare HeadGAN with the baselines,

using the metrics described below.
L1 distance (L1). We evaluate the reconstructive ability
of models by computing the mean l1-distance, between the
synthesised and ground truth frames. We average the dis-
tance across channels, pixel locations and frames in the test
set, to obtain the L1 metric. Please note that RGB channels
are in the range [0, 255].
Peak signal-to-noise ratio (PSNR). This is another metric
to measure the quality of reconstructed videos. PSNR is the
ratio between the maximum possible power of a signal and
the power of noise that affects the fidelity of its represen-
tation, defined as: 20 · log10(MAX I) − 10 · log10 MSE .
Here, MAX I = 255 and MSE denotes the mean squared
error, computed across color channels, spatial locations and
frames. PSNR is expressed in dBs.
Learned Perceptual Image Patch Similarity (LPIPS).
Perceptual metrics such as PSNR are simple shallow func-
tions that are not able to account for many nuances of hu-
man perception. LPIPS [18] uses a neural network that is
trained to solve challenging visual prediction and modeling
tasks as a feature extractor, since the network learns a rep-
resentation that correlates well with perceptual judgments.
Then, a similarity score between two images is calculated
based on visual features.
Fréchet Inception Distance (FID). We employ FID [6, 12]
as a measure of similarity between the dataset of real im-
ages and the dataset of images generated by the models.
This score provides a useful insight into the photo-realism
of synthetic frames.
Fréchet Video Distance (FVD). Given that we handle
video data, it is important to evaluate the generative perfor-
mance of models using a metric which takes into account
the temporal coherence between frames. To that end, we
calculate the FVD score [15] of generated sequences, which
has shown to correlate well with the human judgment on vi-
sual quality of generated videos.
Cosine Similarity (CSIM). Cosine similarity is a widely-
used metric, which measures identity preservation in syn-
thetic frames. We use ArcFace [4] as an identity recogni-
tion network, in order to compute pairs of embedding vec-
tors from the driving and corresponding generated images.
Then, we calculate the cosine similarity between all pairs
of embedding vectors in the dataset and report its average
value. During reenactment, where no ground truth images
are available, we extract the embedding vector from the ref-
erence image and compare it with the embeddings coming
from synthetic frames. This leads to smaller CSIM values
in reenactment, as the poses of the source and generated
images do not match and the identity recognition network’s
output is not completely unaffected by a person’s pose.
Action Units Hamming distance (AU-H). In order to mea-

sure the facial expression transferability of models, we use
OpenFace [1] and more specifically [2], for the detection of
Action Units (AU) in driving and generated images. Facial
Action Coding System (FACS) is a system to taxonomise
human facial movements by their appearance on the face.
Using FACS it is possible to code nearly any anatomically
possible facial expression, deconstructing it into the specific
AUs that produced the expression. It is a common standard
to objectively describe facial expressions. We use Open-
Face to recognise if a set of AUs is present in a facial image
or not, calculating a boolean vector of AUs. Then, we com-
pute the Hamming distance ∈ [0, 1] between AU boolean
vectors, extracted from the corresponding driving and syn-
thetic frames, and average across all frames.
Average Rotation Distance (ARD). This metric evaluates
pose transfer. We use the camera parameters from 3D face
reconstruction to compute the Euler angles that correspond
to head poses in the driving and generated frames. Then,
the average l1-distance of Euler angles across all frames is
determined, in terms of degrees.
Average Rotation Error (ARE). This is a metric similar to
ARD, but measures the average l1-distance of Euler angles
from the frontal pose (zero degrees), across all images.

References
[1] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satya-

narayanan. Openface: A general-purpose face recognition
library with mobile applications. Technical report, CMU-
CS-16-118, CMU School of Computer Science, 2016. 5

[2] T. Baltrušaitis, M. Mahmoud, and P. Robinson. Cross-dataset
learning and person-specific normalisation for automatic ac-
tion unit detection. In 2015 11th IEEE International Confer-
ence and Workshops on Automatic Face and Gesture Recog-
nition (FG), volume 06, pages 1–6, 2015. 5

[3] James Booth, Anastasios Roussos, Stefanos Zafeiriou, Allan
Ponniah, and David Dunaway. A 3d morphable model learnt
from 10,000 faces. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2016. 1

[4] Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In CVPR, 2019. 5

[5] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kot-
sia, and Stefanos Zafeiriou. Retinaface: Single-shot multi-
level face localisation in the wild. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 1

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30, pages
6626–6637. Curran Associates, Inc., 2017. 5



[7] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W.
Shi. Photo-realistic single image super-resolution using a
generative adversarial network. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
105–114, 2017. 1

[8] Jae Hyun Lim and Jong Chul Ye. Geometric gan, 2017. 1
[9] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations (ICLR), 2018. 2

[10] A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb:
a large-scale speaker identification dataset. In INTER-
SPEECH, 2017. 2

[11] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 2

[12] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch.
https://github.com/mseitzer/pytorch-fid,
August 2020. Version 0.1.1. 5

[13] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R.
Bishop, D. Rueckert, and Z. Wang. Real-time single im-
age and video super-resolution using an efficient sub-pixel
convolutional neural network. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1874–1883, 2016. 2

[14] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. CoRR, abs/1607.08022, 2016. 2

[15] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. arXiv preprint arXiv:1812.01717, 2018. 5

[16] Xiangyu Xu, Deqing Sun, Jinshan Pan, Yujin Zhang,
Hanspeter Pfister, and Ming-Hsuan Yang. Learning to super-
resolve blurry face and text images. In Proceedings of the
IEEE international conference on computer vision, pages
251–260, 2017. 1

[17] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang.
Wider face: A face detection benchmark. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2016. 1

[18] Richard Yi Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings -
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 586–595. IEEE Computer Society,
2018. 5

https://github.com/mseitzer/pytorch-fid

