Contrastive Coding for Active Learning under
Class Distribution Mismatch

1 Appendix

1.1 The propertity of lipschitz continuity

Before starting the proof, we will state that CNN is X — Lipschitz continuous. We
have the following definition [1] of Lipschitz continuous with high dimensional x.

Definition 1 A function f : R™ — R™ is called Lipschitz continuous if there
exists a constant L such that

Va,y € R™ |[f (@) = f(y)ll2 < Lllz — yll2.

The smallest L for which the previous inequality is true called the Lipschitz constant
of f and will be denoted L(f).

Then we can conclude the following two Lemmas.
Lemma 1 The Softmax function is A*-Lipschitz continuous.

Proof 1 We can solve the Lipschitz constant of Softmaz function by maximizing
of the Frobenius norm of the Jacobian matrix. Softmaz function is defined as

Fix) = Cewp(xi)
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Its Jacobian matrix is
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And the Frobenius norm will be

c C C
Wlle = (220D 20+ > 20 - i

i=1 j>i

Now, we need to solve the optimal solution for ||J||z, and we use the Lagrange
multiplier method [1]. In our task, the constrains are fi+ fo+ ...+ fc = 1. So, we
can get the unconstrained function as,

c C C
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=1
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where X is a Lagrange multiplier. Then, we obtain several equalities as follows.

i fifi +2fi(1=fi)(1=2f;) =0, Vi=1,2,...C
~
] ht+fot o+ fc=1

The solution is f; = = ,¥Yi=1,2,...,C. Hence, we get Lipschitz constant L(f) =

YOI & ys
YOI 8 ),

1
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Lemma 2 The fully-connected layer is \°-Lipschitz continuous.

Proof 2 With two inputs x;, v; € R", their output at one fully-connected layer is
Yi, yj € R™. The function f : R" — R" can be defined as f(x) =y = Wz. By
similar steps in above proof, we get the \° = 7, if assuming ||W]|z < 7.

Considering that the max pooling layer and Convolutional layer are special fully-
connected layers, both are A°-Lipschitz continuous.

Lemma 3 RelLU is 1-Lipschitz continuous.
Proof 3 ReLU(-) is defined as max(0,-), and we have
||ReLU (x;) — ReLU(z;)||2 = ||max(0,x;) — max(0,z;)||2 < ||z; — z||2.

Thus, ReLU is 1-Lipschitz continuous.
Combing Lemmal &2 &3, we can state that CNN is N-Lipschitz continuous.

Lemma 4 If one Convolutional Neural Networks consists of n. Convolutional lay-
ers, n, maz pooling layers, n, ReLU and a softmaz function, the CNN is A
Lipschitz continuous, where A = \s{\}(netms),



Proof 4 We define the function of d* layer as hy(z) = Waz, so the CNN will be
CNN(z) = Wy inptne+1 - W Wi
Then, we obtain,
ICNN(z;) = CNN(z;)l[s < AN{AFOF™) |2, — g £ N||zi = ;2.

Thus, the CNNs are \-Lipschitz continuous.
Because the loss function can be rewritten as,

’l(i%yi;w) - l(fja?/ﬁwﬂ
= [ICNN(z;) = yilla — ICNN(z5) — y;ll2]
< [|ONN(z;) — CNN(z;)||2

< Na; — a2

Hence, we proof that the loss function is also N-Lipschitza continuous. In the
theoretical study, we use the ly loss instead of the widely applied cross-entropy loss
for the classification problem. Our experiments show that CCAL is very effective
for cross-entropy loss, although our theoretical study does not extend to it.

1.2 The proof for the upper bound of active learning error
A bound for valid query error

With the propertity of lipschitz continuity, we can further proof an effective upper
bound for the valid query error. As we assume that the training error can be reduced
to zero, we have

p—d
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Then, we will calculate the upper bound of expectation of above average, denoted
as By [l(z, y; w)].

Before start, we state a lemma which tells us that if two vectors are close to
each other then their labels are likely to be the same.

Lemma 5 (Ez.3 of Chapter 19 in [3]) Fixz some p,p’ € [0,1] and y' € {0,1}. We

use the notation y ~ p as a shorthand for that y is a Bernoulli random variable

with expected value p, and denote p = %ZZ p; and p' = %Zle CNN;. Show that
Pyply # Y1 < Pyply #y' T+ 0 — 7).
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Proof 5 Ify =0, we have

Pyply # Y] =Pyply =1 =p=p"+p—p < Pyyly #y ]+ Ip -1l
And if y =1, we have

Pynly Y1 =1=-Pyply=0=1-p=1—-p' +p' —p<Pyply #y]+Ip—71
In CLAL framework, the simplified score of distinctiveness is defined as,
Sgis = cos < x;,xi > —c0s < Xy, T; >+ cos < x;,xﬁg >,

where xj,xk represents the 2-nearest meighbor in labeled pool of x;. And x; is the
feature vector learning by contrastive learning of the i point, with |z;| = 1. The
simplification of the score does not influence the performance of our algorithm. We
assume that we can successfully solve the classification task by using the feature
vectors. Then, we can calculate the FEuclidean distance, denoted as d;, between

/
xi7 [Ej.

d; = \/\xl\ + |25| = 2|x;|[2]|cos < 2l @i >

= \/2—2(:05 <x9,xi >

=2 \/1 — (Sais + cos < x) + x; > —cos < m;,xz >)
< V23— Suis
=V2-V3-a. (a <3, inEXU)
The population distribution of x; is T(x;), and the empirical distribution of x; is

(7)), where 2y is its nearest neighbor in labeled set.
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For Zkec |7 (5) — (2 )’l(ﬂfz,yz, w), we obtain

> () ) Ui,y w) =D di - Ui,y w) < V6 — 200 NLK.

keC kel

For ZkeC pyzNTk(x;)(yl = k)l(l‘zv Y, W); we have

> Py (Wi = F)l(i, yis w)

keC
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< XV6 —2a.



Hence, Ey,ror(zpll(zi, yi; w)] < V6 —2a- (ALK + X).

We further use the Hoeffding inequality [”]

p
P{‘% D Uz g w) = Eyer o [l g w)] | > t} < exp(
=1

—210t2

).

Let exp(— 2pt ) = . With probability 1 — ~, we have

A T?%log(1

‘— W ”V g w) — — Zl 2y w ‘ < V6 —2a(N + N'TK) + —Og( /).
. P

=1

A bound for invalid query error

With the boundary of the loss function I(-; w), we have,

d
1 ar
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P p
A bound for active learning error
Therefore, with probability 1 — -, we have
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