
Contrastive Coding for Active Learning under
Class Distribution Mismatch

1 Appendix

1.1 The propertity of lipschitz continuity

Before starting the proof, we will state that CNN is λl−Lipschitz continuous. We
have the following definition [4] of Lipschitz continuous with high dimensional x.

Definition 1 A function f : Rn → Rm is called Lipschitz continuous if there
exists a constant L such that

∀x, y ∈ Rn, ||f(x)− f(y)||2 ≤ L||x− y||2.

The smallest L for which the previous inequality is true called the Lipschitz constant
of f and will be denoted L(f).

Then we can conclude the following two Lemmas.

Lemma 1 The Softmax function is λs-Lipschitz continuous.

Proof 1 We can solve the Lipschitz constant of Softmax function by maximizing
of the Frobenius norm of the Jacobian matrix. Softmax function is defined as

fi(x) =
exp(xi)∑C
j=1 exp(xj)

≜ fi i = 1, 2, ..., C.

Its Jacobian matrix is

J =


f1(1− f1) −f1f2 ... −f1fC
−f2f1 f2(1− f2) ... −f2fC
... ... ... ...

−fCf1 −fCf2 ... −fC(1− fC)

.
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And the Frobenius norm will be

||J ||F =

√√√√2
C∑
i=1

C∑
j>i

f 2
i f

2
j +

C∑
i=1

f 2
i (1− fi)2.

Now, we need to solve the optimal solution for ||J ||F , and we use the Lagrange
multiplier method [1]. In our task, the constrains are f1 + f2 + ...+ fC = 1. So, we
can get the unconstrained function as,

F (x) =

√√√√2
C∑
i=1

C∑
j>i

f 2
i f

2
j +

C∑
i=1

f 2
i (1− fi)2 + λ(1− f1 − f2 − ...− fC),

where λ is a Lagrange multiplier. Then, we obtain several equalities as follows.
C∑
j ̸=i

fif
2
j + 2fi(1− fi)(1− 2fi) = 0, ∀i = 1, 2, ..., C

f1 + f2 + ...+ fC = 1

The solution is fi =
1
C

,∀i = 1, 2, ..., C. Hence, we get Lipschitz constant L(f) =
√
C−1
C

≜ λs.

Lemma 2 The fully-connected layer is λc-Lipschitz continuous.

Proof 2 With two inputs xi, xj ∈ Rn, their output at one fully-connected layer is
yi, yj ∈ Rn. The function f : Rn → Rn can be defined as f(x) = y = Wx. By
similar steps in above proof, we get the λc = τ , if assuming ||W||F ≤ τ .

Considering that the max pooling layer and Convolutional layer are special fully-
connected layers, both are λc-Lipschitz continuous.

Lemma 3 ReLU is 1-Lipschitz continuous.

Proof 3 ReLU(·) is defined as max(0, ·), and we have

||ReLU(xi)−ReLU(xj)||2 = ||max(0, xi)−max(0, xj)||2 ≤ ||xi − xj||2.

Thus, ReLU is 1-Lipschitz continuous.
Combing Lemma1 &2 &3, we can state that CNN is λl-Lipschitz continuous.

Lemma 4 If one Convolutional Neural Networks consists of nc Convolutional lay-
ers, np max pooling layers, nr ReLU and a softmax function, the CNN is λl-
Lipschitz continuous, where λl = λs{λc}(nc+np).
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Proof 4 We define the function of dth layer as hd(x) = Wdx, so the CNN will be

CNN(x) = Wnc+np+nr+1 · · ·W2W1x.

Then, we obtain,

||CNN(xi)− CNN(xj)||2 ≤ λs{λc}(nc+np)||xi − xj||2 ≜ λl||xi − xj||2.

Thus, the CNNs are λl-Lipschitz continuous.
Because the loss function can be rewritten as,

|l(xi, yi;w)− l(xj, yj;w)|
=

∣∣||CNN(xi)− yi||2 − ||CNN(xj)− yj||2
∣∣

≤ ||CNN(xi)− CNN(xj)||2
≤ λl||xi − xj||2.

Hence, we proof that the loss function is also λl-Lipschitza continuous. In the
theoretical study, we use the l2 loss instead of the widely applied cross-entropy loss
for the classification problem. Our experiments show that CCAL is very effective
for cross-entropy loss, although our theoretical study does not extend to it.

1.2 The proof for the upper bound of active learning error

A bound for valid query error

With the propertity of lipschitz continuity, we can further proof an effective upper
bound for the valid query error. As we assume that the training error can be reduced
to zero, we have∣∣∣∣1p

p−d∑
i=1

l(x
ID\re
i , yi;w)− 1

q

q∑
j=1

l(xtr
j , yj;w)

∣∣∣∣ ≤ ∣∣∣∣1p
p∑

i=1

l(xID C
i , yi;w)

∣∣∣∣.
Then, we will calculate the upper bound of expectation of above average, denoted

as Ey∼τ(x)

[
l(x, y;w)

]
.

Before start, we state a lemma which tells us that if two vectors are close to
each other then their labels are likely to be the same.

Lemma 5 (Ex.3 of Chapter 19 in [3]) Fix some p, p′ ∈ [0, 1] and y′ ∈ {0, 1}. We
use the notation y ∼ p as a shorthand for that y is a Bernoulli random variable
with expected value p, and denote p = 1

k

∑
i pi and p′ = 1

k

∑k
i=1CNNi. Show that

Py∼p[y ̸= y′] ≤ Py∼p′ [y ̸= y′] + |p− p′|.
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Proof 5 If y′ = 0, we have

Py∼p[y ̸= y′] = Py∼p[y = 1] = p = p′ + p− p′ ≤ Py∼p′ [y ̸= y′] + |p− p′|.

And if y′ = 1, we have

Py∼p[y ̸= y′] = 1− Py∼p[y = 0] = 1− p = 1− p′ + p′ − p ≤ Py∼p′ [y ̸= y′] + |p− p′|.

In CLAL framework, the simplified score of distinctiveness is defined as,

Sdis = cos < x′
j, xi > −cos < x′

k, xi >+ cos < x′
j, x

′
k >,

where x′
j, x

′
k represents the 2-nearest neighbor in labeled pool of xi. And xi is the

feature vector learning by contrastive learning of the ith point, with |xi| = 1. The
simplification of the score does not influence the performance of our algorithm. We
assume that we can successfully solve the classification task by using the feature
vectors. Then, we can calculate the Euclidean distance, denoted as di, between
xi, x

′
j.

di =
√
|xi|+ |x′

j | − 2|xi||x′
j |cos < x′

j , xi >

=
√
2− 2cos < x′

j , xi >

=
√
2 ·

√
1− (Sdis + cos < x′

k + xi > −cos < x′
j , x

′
k >)

≤
√
2 ·

√
3− Sdis

=
√
2 ·

√
3− α. (α ≤ 3, ∀xi ∈ XU )

The population distribution of xj is τ(xj), and the empirical distribution of xj is
τk(x

′
j), where x′

j is its nearest neighbor in labeled set.

Eyi∼τ(xi)[l(xi, yi;w)] =
∑
k∈C

pyi∼τk(xi)(yi = k)l(xi, yi;w)

≤
[∑

k∈C

pyi∼τk(x
′
j)
(yi = k)l(xi, yi;w) +

∑
k∈C

|τk(xi)− τk(x
′
j)|l(xi, yi;w)

]
For

∑
k∈C |τk(xi)− τk(x

′
j)|l(xi, yi;w), we obtain∑

k∈C

|τk(xi)− τk(x
′
j)|l(xi, yi;w) =

∑
k∈C

di · l(xi, yi;w) ≤
√
6− 2α · λµLK.

For
∑

k∈C pyi∼τk(x
′
j)
(yi = k)l(xi, yi;w), we have∑

k∈C

pyi∼τk(x
′
j)
(yi = k)l(xi, yi;w)

=
∑
k∈C

pyi∼τk(x
′
j)
(yi = k){l(xi, yi;w)− l(xj, yj;w)}+

∑
k∈C

pyi∼τk(x
′
j)
(yi = k)l(xj, yj;w)

≤ λl
√
6− 2α.

4



Hence, Eyi∼τ(xi)[l(xi, yi;w)] ≤
√
6− 2α · (λµLK + λl).

We further use the Hoeffding inequality [2]

P
{∣∣1

p

p∑
i=1

l(xID C
i , yi;w)− Ey∼τ(x)

[
l(x, y;w)

]∣∣ ≥ t

}
≤ exp(

−2pt2

T 2
).

Let exp(−2pt2

T 2 ) = γ. With probability 1− γ, we have∣∣∣∣1p
p−d∑
i=1

l(x
ID\re
i , yi;w)− 1

q

q∑
j=1

l(xtr
j , yj;w)

∣∣∣∣ ≤ √
6− 2α(λl + λµTK) +

√
T 2log(1/γ)

2p
.

A bound for invalid query error

With the boundary of the loss function l(·;w), we have,∣∣∣∣1p
d∑

i=1

l(xre
i , yi;w)

∣∣∣∣ ≤ dT

p

A bound for active learning error

Therefore, with probability 1− γ, we have∣∣∣∣1p
p−d∑
i=1

l(x
ID\re
i , yi;w)− 1

q

q∑
j=1

l(xtr
j , yj;w)

∣∣∣∣+ ∣∣∣∣1p
d∑

i=1

l(xre
i , yi;w)

∣∣∣∣
≤

√
6− 2α(λl + λµTK) +

√
T 2log(1/γ)

2p
+

dT

p
.
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