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Abstract

In this supplementary material, we show the superiority
of our method in RS effect removal in Fig. 1, and further
provide detailed ablation studies on network F, network U,
and loss function L. Afterward, we demonstrate the advan-
tages of our method over the state-of-the-art video frame
interpolation methods. And more experimental analyses on
DeepUnrollNet [4] are carried out. We also show the gen-
eralization results of our method by using other real RS im-
ages. Furthermore, more qualitative results and a video
demo are included to prove the effectiveness of our method
in recovering high framerate GS video frames. In the end,
we derive the RS-aware backward warping model that ac-
counts for the second RS frame, and then summarize the
details of our loss function.

1. Ablation Studies

We present a series of ablation studies of our architecture
design in terms of backbone networks F and ¢/ and loss
function £. We will explain each of them in detail below.

daiyuchao@nwpu.edu.cn

1.1. Ablation on the selection and training strategy
of network F

We first replace PWC-Net [10] with the state-of-the-art
optical flow estimation baseline RAFT [11]. Then, we ana-
lyze the influence of different training strategies of network
F, including parameter freezing and model initialization
during training, i.e.,

e F-Scra: We initialize F from scratch and optimize it
with the whole model.

e F-Pret: We initialize F from the pre-trained model
provided by [10] and optimize it with the whole model.

The quantitative results are summarized in Table 1 and
Table 2. We can observe that RAFT contributes slightly
worse than PWC-Net to the high framerate GS video ex-
traction in our implementation. Freezing the network pa-
rameters when using RAFT can significantly improve per-
formance, but it has the opposite benefit when combined
with PWC-Net. When initializing from the pre-trained
model, especially with the addition of fine-tuning, our
method shows a substantial performance improvement. Af-
ter jointly optimizing the whole network together with
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Figure 1: A difficult example for joint RS correction and temporal super-resolution (towards the first scanline of the second
frame). Our method fully explores the underlying RS geometry and generates a set of high-quality GS results, in spite of the

road sign that is subject to large RS artifacts.



Table 1: Ablation study on the selection and training strategy of
network F. We employ different optical flow estimation baselines
(RAFT [11] and PWC-Net [10]), while testing the effect of freez-
ing their parameters during training.

PSNR?T SSIM?T
RAFT PWC-Net Freeze CRM R R R
v v 29.81  20.63 0.87 0.77
v X 26.75  20.38 0.84 0.71
v v 29.44  20.64 0.86  0.77
v X 30.17 21.26 0.87 0.78

Table 2: Effectiveness of different components of our model on
the Carla-RS dataset.

PSNRT SSIMT LPIPS|
CRM  CR CR CR

F-Scra 2737 2422 0.80 0.0804
F-Pret 29.89  24.61 0.86 0.0697
wio T 2543 2255 0.82 0.1116
wio AF  29.12 2429 0.85 0.0725
wlo L, 2044 2435 0.86 0.0713
wlo L, 29.82  24.61 0.86 0.0706
wlo L 2928  24.44 0.86 0.0725
full model  30.17 24.78 0.87 0.0695

PWC-Net, the overall performance is further improved,
which is better capable of exploiting the concealed motion
between scanlines as well as the scene structure.

1.2. Ablation on the design of network ¢/

We further investigate the contribution of each compo-
nent in network I/ as follows:

e w/o T: We remove the normalized scanline offset in
Eq. (19) of the main manuscript, and replace the Sig-
moid function with the Tanh function in network U to
uniformly map the correlation factor prediction of each
pixel to the interval of (—1, 1).

e w/o AF: We remove the optical flow residual estima-
tion layer in network U, i.e., AF| ,o = AF5 .1 =0
in Eq. (20) of the main manuscript.

We report the results in Table 2 and Fig. 2. One can see
that the explicit constraint of the normalized scanline offset
benefits the learning the scanline-dependent nature of the
RS undistortion flow, which is consistent with the observa-
tion in [4]. Also, adding the optical flow residual estimation
layer is effective to facilitate the edge alignment and im-
prove the robustness of the proposed model in the extreme
case, thereby recovering more complete image details.

1.3. Ablation on the loss function

We show the results of training our models under differ-
ent loss function settings in Table 2. We remove each loss
term from the overall loss function £ respectively. Without

Figure 2: The optical flow residual estimation layer can ef-
fectively alleviate the artifacts and holes at the boundaries
caused by optical flow misalignment, resulting in higher
quality results.

L,, indicates freezing the parameters of PWC-Net in Ta-
ble 1. Forcing the smoothness of the estimated flows has a
particularly positive effect on improving the performance.
Our loss function is effective as the performance of adopt-
ing all loss terms is the best.

2. Versus Video Frame Interpolation Methods

The current video frame interpolation algorithms, e.g.,
BMBC [6] and DAIN [ 1], have a common implicit assump-
tion that the camera uses a global shutter, where the pixel
displacement is controllable and located in the correspond-
ing optical flow. Specifically, linearly scaling the optical
flow between 0 and 1 to approximate the required interme-
diate pixel displacement in order to warp input images. In
contrast, to correct the RS image, as shown in Eq. (13) in the
main manuscript, the pixel displacement is neither a linear
function of scanline time (including complex RS geometry)
nor within the corresponding optical flow (i.e., the length
of the RS undistortion flow may be larger than that of the
optical flow, or its direction may be opposite to the optical
flow), involving inherent non-local operations. Therefore,
because of inherent flaws in the network architectures, the
existing video frame interpolation algorithms are incapable
of eliminating the RS effect effectively. We validate this
argument in Fig. 3, which also highlights the superiority of
our RSSR method in recovering high-quality distortion-free
GS video frames.

Furthermore, we conduct experiments to compare with
the two-stage approach, i.e., given three consecutive RS im-
ages, we first obtain two corrected GS images in sequence
using DeepUnrolINet [4], and then interpolate the GS im-
age corresponding to the first scanline of the third RS im-
age using DAIN [1]. As visualized in Fig. 4, this two-stage
approach suffers from serious blur artifacts as well as local
inaccuracies. Moreover, it is computationally inefficient.
For instance, to recover 960 GS video frames, the two-stage
approach takes about 5 minutes (at least 0.3 seconds to gen-
erate a frame with DAIN), while our RSSR method takes
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Figure 3: Visual results against video frame interpolation algorithms (BMBC [6] and DAIN [1]) to generate an interme-
diate frame corresponding to the intermediate time of two consecutive RS frames. Only our proposed RSSR method can
successfully remove RS artifacts.
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Figure 4: Visual results against the two-stage approach: perform RS correction first, then perform video frame interpolation.



Vasuetal. [12]
Figure 5: Qualitative comparison of image correction results on real data with obvious RS distortion provided by [13]. Our
pipeline can effectively estimate plausible GS images.
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Table 3: Quantitative comparisons of the performance between our approach and DeepUnrolINet [4] in recovering GS images correspond-
ing to the middle scanline of the second RS frame. Note that, in other chapters and the main manuscript, all competing methods refer to

the first scanline of the second RS frame.

PSNRT SSIMT LPIPS|
Method CRM CR R CR IR CR FR
DeepUnrollNet [4]  27.86 27.54 27.02 0829 0.828 0.0555  0.0791
RSSR (Ours) 2936 2657 2501 0.900 0834  0.0553 00817

a total of 1.8 seconds. Since our method solves the RS
correction and temporal super-resolution simultaneously, it
achieves excellent performance in terms of both accuracy
and efficiency.

3. Instruction on Comparison With DeepUn-
rollNet [4]

In our evaluation, in order to be consistent with [13—15]
(i.e., recovering the GS image corresponding to the first
scanline of the second frame), all competing results relate to
the first scanline of the second frame. Note that we retrain
DeepUnrollNet [4] to adapt to this task for fair compari-
son. However, the original publication of [4] is mainly used
to restore a GS image corresponding to the middle scan-
line of the second frame, so we additionally add quantita-
tive and qualitative results under the middle scanline of the
second frame, as shown in Table 3 and Fig. 6. One can see
that, except for some occluded edges, our method is com-
parable or superior to DeepUnrollNet in returning the GS
image corresponding to the middle scanline of the second
frame. Note also that our method can restore the GS im-
age corresponding to any scanline without demanding ac-
cess to the supervision of the corresponding GT GS images.
In addition, our method is more satisfactory when restoring
the GS image corresponding to the first scanline of the sec-
ond frame. However, DeepUnrollNet is limited to generate
a single reliable GS frame that corresponds to the middle
scanline of the second frame, and has poor adaptability to
the recovery of GS images of other scanlines, even if the
corresponding precious GT GS supervision is provided.

4. Generalization to other Real RS Data

Our learning-based model is trained on the Carla-RS
dataset, within which the RS artifacts are mainly caused by
uniform camera motion. We apply our method to real RS
images provided by [13] and show example results in Fig. 5.
The results reveal that our proposed method owns good gen-
eralization ability and can recover visually compelling GS
images, due to learning the underlying RS geometry.

5. More Qualitative Experimental Results

We provide more qualitative results on the Carla-RS and
Fastec-RS datasets, as shown in Figs. 7 and 8. Also, an
enlarged result is reported in Fig. 1. Compared with the
off-the-shelf RS correction algorithms, including SMARSC
[15], DeepUnrollNet [4], DiffHomo [14], and DiffSfM [ 13],
our pipeline effectively restores higher quality GS images.
Particularly, our RSSR model can also recover smooth and
high framerate GS video sequences.

6. RSSR Video Demo

We attach a video named “RSSR_Video.mp4” to show
the dynamic results of our method in simultaneous RS cor-
rection and temporal super-resolution. In principle, we can
produce videos with arbitrary frame rates. Our RSSR net-
work learns to solve the complex RS geometry embedded in
the consecutive RS frames, so it can robustly and accurately
recover photorealistic time-continuous GS images. Overall,
our method not only has the advantage of RS correction at
a specific scanline time, but also has the superior ability to
restore GS images at any scanline time.
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Figure 6: Visual comparison of GS images corrected to the middle scanline of the second RS frame. At this time, the
corresponding plausible GS image can be reconstructed by DeepUnrollNet [4] and our method. Since we have not developed
a modulated image decoder as in [4], our method cannot fill the occluded regions. Our RSSR method, however, is able to
recover GS video images at any scanline, which is far beyond the reach of DeepUnrollNet.

7. RS-Aware Backward Warping Model

To formulate the RS-aware backward warping account-
ing for frame 2, the backward inter-frame camera velocities

(v/,w’) should obey: v/ = —v and w’ = —w. Let Z’ de-
note the depth of each pixel x’ in frame 2 and (f/, f/) the

backward optical flow from frame 2 to frame 1. In complete
analogy with the RS forward motion parameterizations in
Section 3 of the main manuscript, we again derive the rela-
tive motion between scanline s; of frame 1 and scanline so
of frame 2 as:

Vaps, = (A2 — AJ) v/,

’ iz il / (1)
Wsys1 = ()‘2 - )‘1 )w ’

where
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Note that f] = s; — so. In the same way, we can obtain RS-
aware backward warping model for the backward optical
flow at pixel x’ as:

fqlb o WU(V/,WI,X/,Z/7f)
{ f ] - { m w20 |
where
/
o =1- 7:;” o

represents the RS-aware backward interpolation factor un-
der the constant velocity model.

Furthermore, we derive the RS-aware backward warping
displacement vector, which transforms each RS pixel x’ on
k-th scanline of frame 2 to arrive at a distortion-free frame



defined by the pose of s-th scanline of frame 2, as follows:
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where
6/ - 7(5 — H)
h

represents the RS-aware backward undistortion factor.

In a nutshell, Eq. (3) constrains the backward optical
flow from frame 2 to frame 1 and Eq. (5) describes the back-
ward RS undistortion flow from frame 2 to its scanline s.
Just need to negative the readout time ratio v, we can simply
model the RS-aware backward warping. Other conclusions
resemble those in forward warping. Note that the mutual
conversion scheme between varying scanline-dependent RS
undistortion flows is consistent in the forward and backward
warpings, because they are independent of .

(6)

8. Details of the Loss Function

Given a pair of consecutive RS images I! and I2, our
network predicts the bidirectional optical flows F;_,o and
F5_,1, the bidirectional RS undistortion flows U;_,,, and
Uz, and the target middle-scanline GS images I_}] and
I2. Let I}, and I?, denote the corresponding ground truth
GS images. Our loss function £ is a linear combination of
the reconstruction loss £,., perceptual loss £,, [2], warping
loss £,,, and smoothness loss L:

L= prLy + ppLly + prw Lo + psLs, (7

where (., fip, e and p, are hyper-parameters to balance
different losses.

Reconstruction loss L,: We measure the pixel-wise re-
construction qualities of the corrected middle-scanline GS
images as:

2
L= -1, @®)
=1

Perceptual loss L,: To mitigate the blur in the corrected
middle-scanline GS images, we therefore use a perceptual
loss £, [2] to preserve details of the predictions and make
estimated GS images sharper. Similar to [4], £,, is defined
as:

Ly =;H¢(Ié) —o @l ©)

where ¢ represents the conv3_3 feature extractor of the
VGG19 model [9].

Warping loss L,: Besides supervising the middle-
scanline GS image predictions, we also introduce the warp-
ing loss £,, to maintain the qualities of the final bidirec-
tional optical flows, defined as:

-

I - g, Fio)| +

L - g Fas)| , (10)

where F1_,0 = F1 0 +AF 2, Fo 1 = Fo 1 +AF2_,,
and g(-, -) is the backward warping function.

Smoothness loss L. At last, a smoothness term [5] is
employed to enforce the smoothness of the bidirectional op-
tical flows and bidirectional RS undistortion flows as:

2 2
L=y 3 ”VFH]-HQ VUil (1)
i=1 j=1,j#1i
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Figure 7: Qualitative results against baseline methods on the Carla-RS dataset. Even rows: Absolute difference between the
corrected GS image and the corresponding GT GS image.
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Figure 8: Qualitative results against baseline methods on the Fastec-RS dataset. Even rows: Absolute difference between the
corrected GS image and the corresponding GT GS image.



