# Supplementary Material for "RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection"

#### **1. Detailed Configuration**

**Training scheme.** All experiments use the SGD optimizer with 0.9 momentum and 1e-5 weight decay. We use 8 2080Ti GPUs for training. The mini-batch size of each GPU is 2. We train our model for 36 epochs from scratch, and adopt the cosine learning rate scheduler with an initial learning rate of 0.01.

**Inference.** During inference, we treat proposals with scores higher than a certain threshold as positive proposals. The threshold for vehicle/pedestrian/cyclist is 0.5/0.3/0.3, respectively. The IoU threshold in NMS (or Weighted NMS) for vehicle/pedestrian/cyclist is 0.2/0.3/0.3, respectively.

**Network Details.** Each stage of our backbone consists of a couple of Basicblocks [1]. The number of blocks in each stage: Res1:2, (Res2, Res3):3, (Res4, Res5):5, (Agg1, Agg2, Agg3, Agg4, Agg5):2. The number of filters in convolution layers in each stage: (Res1, Agg1, Res2, Agg2, Res3, Agg3):64, (Res4, Agg4, Res5, Agg5):128. Both classification (IoU prediction) and regression branches contain four consecutive convolutions. The kernel sizes of the first three convolutions are  $3 \times 3$ , and the last one is  $1 \times 1$ . Batch Normalization and ReLU are adopted between two consecutive convolutions.

#### 2. Implementations of Point-based Operators

For all these point-based operators, we first re-define their neighborhood in the range view. In 3D space, kNN or ball query is adopted for neighbor query. In the range image, for each position, points in its  $3 \times 3$  neighborhood are regarded as its neighbors. In 3D space, FPS is usually used to find key points for downsampling. We do not select key points since we use convolution with stride to downsample feature maps. So, these operators are applied to every position (point) in range image. For clarity, the center point of a local  $3 \times 3$  neighborhood is denoted as  $p_i$ , and  $p_j$  denotes one of its neighbors. Thus, their feature vectors denoted as  $f_i$  and  $f_j$ . Their coordinates are denoted as  $x_i$  and  $x_j$ .

For PointNet-RV, the concatenation of  $x_i - x_j$  and  $f_j$  is denoted as  $\hat{f}_j$ . A two-layer MLP with 64 filters generates output feature  $f_j^o$  for each  $p_j$  from  $\hat{f}_j$ . The output feature of  $p_i$  is the max-pooling of all  $f_j^o$ . For EdgeConv-RV, the input of MLP is  $f_i - f_j$ . Other implementation details are same with PointNet-RV.

For efficient version of ContinuousConv-RV, we use the same MLP to generate weight vector  $w_j$  from  $x_i - x_j$ . Output feature of  $p_j$  is the element-wise product of  $w_j$  and  $f_j$ . Finally, we use channle-wise summation to aggregate output feature of every  $p_j$ .

RSConv-RV is similar to ContinuousConv-RV. The difference is RSConv-RV use max-pooling as aggregation.

For RandLA, the model first learns a feature  $f_j^{(1)}$  from the concatenation of  $x_j$  and  $x_i - x_j$  via a Fully-Connected (FC) layer. The FC layer has 64 filters and is followed by Batch Normalization and ReLU. Then we concatenate  $f_j$ and  $f_j^{(1)}$ , denoted as  $f_j^{(2)}$ . Another FC layer with 64 filters is used to learn the attentive pooling scores from  $f_j^{(2)}$ . Finally, we aggregate all  $f_j^{(2)}$  to get the output feature of  $p_i$ by attentive pooling.

For a better understanding of Meta-Kernel, we summarize the differences between several closely related work and our Meta-Kernel convolution in Table **??**.

### **3. Detailed Results**

Table 1, Table 2 and Table 3 show the detailed results of our best model.

| Conditions          | 3D AP/APH   | BEV AP/APH  |
|---------------------|-------------|-------------|
| Overall LEVEL_1     | 72.85/72.33 | 86.94/86.22 |
| Overall LEVEL_2     | 64.03/63.57 | 78.07/77.40 |
| [0m, 30m) LEVEL_1   | 87.96/87.44 | 94.35/93.77 |
| [0m, 30m) LEVEL_2   | 87.17/86.66 | 93.66/93.09 |
| [30m, 50m) LEVEL_1  | 69.03/68.53 | 85.66/84.93 |
| [30m, 50m) LEVEL_2  | 63.11/62.64 | 79.80/79.09 |
| [50m, +inf) LEVEL_1 | 48.88/48.35 | 77.01/75.92 |
| [50m, +inf) LEVEL_2 | 38.42/37.98 | 62.73/61.78 |

Table 1. Detailed results of vehicle detection on WOD validation split. IoU threshold is 0.7.



Figure 1. Illustration of random global flipping in range view. Rectangles with black solid line stand for range images. Triangles in the same color indicate an object before and after the augmentation. Red dash lines indicate the flipping axes.



Figure 2. Illustration of random global rotation in range view.

| Conditions          | 3D AP/APH   | BEV AP/APH  |
|---------------------|-------------|-------------|
| Overall LEVEL_1     | 75.94/71.94 | 81.02/76.52 |
| Overall LEVEL_2     | 67.60/63.89 | 72.94/68.66 |
| [0m, 30m) LEVEL_1   | 82.20/79.01 | 85.96/82.48 |
| [0m, 30m) LEVEL_2   | 77.92/74.82 | 82.13/78.71 |
| [30m, 50m) LEVEL_1  | 75.39/70.93 | 80.96/75.94 |
| [30m, 50m) LEVEL_2  | 68.03/63.87 | 73.68/68.93 |
| [50m, +inf) LEVEL_1 | 65.74/58.31 | 74.44/65.47 |
| [50m, +inf) LEVEL_2 | 51.33/45.23 | 59.65/52.01 |

Table 2. Detailed results of pedestrian detection on WOD validation split. IoU threshold is 0.5.

## 4. Illustration of Data Augmentation

We have described data augmentation in range view in the main paper. For a better understanding, we provide illustrations of global flipping and global rotation, shown in Fig. 1 and 2.

# 5. Qualitative Results

The qualitative results are showing in Fig. 3. Note that most false negatives containing no points, so they can not be detected using a single-frame algorithm.

| Conditions          | 3D AP/APH   | BEV AP/APH  |
|---------------------|-------------|-------------|
| Overall LEVEL_1     | 65.67/64.39 | 68.45/67.07 |
| Overall LEVEL_2     | 63.33/62.08 | 65.76/64.45 |
| [0m, 30m) LEVEL_1   | 79.33/77.87 | 80.41/78.92 |
| [0m, 30m) LEVEL_2   | 78.82/77.38 | 79.90/78.42 |
| [30m, 50m) LEVEL_1  | 55.80/54.76 | 58.88/57.76 |
| [30m, 50m) LEVEL_2  | 52.52/51.44 | 55.45/54.39 |
| [50m, +inf) LEVEL_1 | 45.00/43.93 | 50.76/49.50 |
| [50m, +inf) LEVEL_2 | 41.97/40.97 | 47.22/46.05 |

Table 3. Detailed results of cyclist detection on WOD validation split. IoU threshold is 0.5.

## References

 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In *CVPR*, pages 770–778, 2016.



Ground Truth

Prediction

Figure 3. Qualitative results.