- Supplementary material Exploring Classification Equilibrium in Long-Tailed Object Detection

1. Implementation details

Here we elaborate on the more detailed implementations for the experiments in ablation study.

Feature memory module. The memory size M is set to 80, which can store five latest instance features for each category. Thus, we initialize the memory features by randomly selecting 5 instances per class. In addition, an image may contain multiple instances of the same category (e.g., >20 instances) on LVIS. For simplicity and efficiency, we randomly select 5 instances to update the feature memory for each category that contains more than 5 instances in an image during the training.

Dataset-based EBL. For dataset-based EBL, we use the number of the training instances of each category to compute the loss margin as follow:

$$
\begin{equation*}
\delta_{y y^{\prime}}=\log \left(\frac{n_{y^{\prime}}}{n_{y}}\right) \tag{1}
\end{equation*}
$$

where n_{y} is the number of the training instances of category y. As the score-based EBL, we use a small value \hat{n}_{C+1} to replace n_{C+1} (i.e., the number of the training instances of background) to reduce the false positive cases. In our experiments, \hat{n}_{C+1} is set to 1 .

Dataset-based MFS. The bounding box generator and the feature memory module of dataset-based MFS are the same as those of score-based MFS, while the probabilistic sampler of dataset-based MFS uses the sampling probability based on the number of the training instances of each category. Namely, the sampling probability is computed as follow:

$$
\begin{equation*}
p_{y}=\frac{f\left(n_{y}\right)}{\sum_{y^{\prime}} f\left(n_{y^{\prime}}\right)} \tag{2}
\end{equation*}
$$

where:

$$
\begin{equation*}
f\left(n_{y}\right)=\frac{1}{n_{y}} \tag{3}
\end{equation*}
$$

Repeat factor sampling (RFS). RFS over-samples the images containing the tail classes by increasing the sampling rate for these categories. As demonstrated in [1], we use the best setting of RFS that over-samples the categories that appear in less than 0.1% of the total images.

References

[1] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5356-5364, 2019.

