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1. Proof of Theorems 1 and 2

Theorem 1 Let G be a fixed representation function
from X to F, and H be a hypothesis space of VC-dimension
d. If a random labeled sample of size m is generated by ap-
plying G to a D, - i.i.d. The feature f is drawn from Dg
or Dy with corresponding label y. Denote that U, Uy are
the set of unlabeled samples of size m’ each, drawn from
Dg and Dy respectively. Then with the probability at least
1 — ¢ (over the choice of the samples), for every C' € H.:

€T (C ) <

s(C) + A+ dy (Us, Ur
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m/
= const + dv (Z;{S, Z;[T)

where €ég(C') is empirical error of source sam-
ples, A is a very small constant, e represents the

base of the natural logarithm, dv (Z;{S,ZZT) =
a5, 1, | Ereits DoV L) = Egergy Dy(VsL)| s
the introduced V-distance, D, is the discriminator and
Here £(-) denotes the loss

o 1
a = ming(fyepo,1] Ve £L(C(F)y)*

function.

Theorem 2 When a < 1, our method can obtain a
tighter upper bound than traditional domain adaptation
methods:

const + dy (ZZIS,Z;{T) < const + dy (Z;lS,Z;{T) , Where
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Proof According to [3, 1], the domian discrepancy is
defined as |ep (C,C*) — €5 (C, C*)| where C* is the ideal
joint hypothesis defined as C* = argming eg(C) + er (C).
We assume that the most misclassified examples are clas-
sified as wrong classes with low confidence (close to the
decision boundary). Thus, there exists a small perturbation
vector v € F for each feature f such that C(f + ) = v,
where y is the true label. The domain discrepancy can be
reformulated as

er (C,C7) — 5 (C,C*)
= Efop, [C(F) # C°(F)] = Epop, [C(F) # C* ()]
=By p, [C(F) = C*(H)] = By, [C(F) = C"()]]
:IEfND"TIy*C*(f)JrC(f)* C(f +)
— By 5 ly=C(F)+C(F) = C(f + )]

< |Ef~75T ly —C*(f )|_Ef~255 ly — C*(£)]

+E; 5, [C(f) = C(f +7)|

—E; 5, 1C(f) = C(f + )|
< [Epep, [y = C () = Epop, ly = C (I

+[Es 5, 1C(F) = C(f +7)]

— B4 5, 1C(F) = CUf + I
2
Since the ideal joint hypothesis C* is expected
to minimize the joint error on two domains,

Byop, |y = C*(F = Bpop, ly—C*(HI|  should
be a very small constant and we treat it as zero. Then, we



reformulate the bound of target error in [3, 1] as

er(C) <es+ A+ |er (C,C*) —es (C,C")]
<es+ A
+ [Esop, IC(f +7) = C(f)
—E4 5, [C(f +7) = C(f)]

| 3)
|

wecan find b = min VeL(C(f),y) and ignore the

C(f)eo,1]
second and higher order terms in Taylor’s expansion of
L(C(f+7),y) (v are small and we can regularize the func-
tion to be with the small second order term). Then, we have

BO(f +7) = C(HI < ILC(f +7,9) = LIC(f,9)]
= [yViL]. W

By defining the a = %, we obtain

IC(f+7)—C(f)| < alL(C(f+7,y)—LIC(f.y)], O
such that

[E s, [C(f +7) = C(F)| = Epop, [C(F +7) = C(FI]

=alEs 5, [VVeL| = E; 5. 7VsL] ©
Accordingly, the probabilistic bound of target error is
changed to

er(C) < es + A+ Jep (C,C*) — €5 (C, C*)]
<es+ A
+alE; 5, [YVL| —E; 5, [YV£L]]
<es+ A +dy(Ds, Dr),

)

where the dy (Dg, Dr) is a proposed V-distance to upper
bound the target error. Since |C(f + ) — C(f)| € [0,1],
we define a distance

dy (ﬁs,ﬁT) -

a sup |EfepsDg(ViL) — Efep, Dg(ViL)l,
D,eHp

®)

where D, is a binary classifier of a hypothesis space Hp
over VL.

Next, we prove that the proposed V-distance enables a
tighter bound of target error compared with original theory
[1]. Considering that V£ can be obtained by a function
V4L = Dy(f) with respect to f (D; € Hy : R — R?),
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Figure 1. t-SNE visualizations of feature distribution and gradi-
ent distribution for CDAN-E, proposed FGDA (w/o JR, SP) and
FGDA on the A—W task of the Office-31 dataset. Blue and red
points denote the source and target domain samples respectively.

when a < 1, we can re-write Equ. 7 as

er(C) < €5+ A+ |er (C,C%) — es (C,C¥)|
<egs+ A

+a sup |EfepsDy(D1(f))
DycHp

— Efep, Dg(D1(f))|
<es+ A
+a

€))

sup |EfensDg(Dy(f))
DyeHp,DyeHy

— Efep, Dy(Ds(f))|
<es+A+dy(Ds,Dr).

where Dy € H; : RY — R? and dy (zfls,L?T) -
ASUPp, eHp |Efezjng(f) - Efeu}Dg(f)"

2. Visualization Results

We provide additional visualization results to demon-
strate the effectiveness of the proposed method, as shown in
Fig. 1. Although the CDAN-E [3] conditions on a discrimi-
nator on the joint variable of feature and classifier’s output,
its feature and gradient distribution are still not well aligned.
Utilizing merely gradient discriminator in FGDA (w/o JR,
SP), the gradient distribution discrepancy is reduced such
that the domain shift is reduced. In FGDA, target discrimi-
native feature is obtained due to the gradient regularization
and soft supervised learning of gradient alignment, compar-
ing with CDAN-E.



r(in \p) A-W D-W A-D D-A W-A

0.25 95.2 98.6 948 758 765
0.50 95.3 98.9 954 777  76.1
0.75 95.7 98.9 956 776 76.0
1.00 95.1 98.7 954 781 765
1.25 94.5 98.7 952 764 764

Table 1. Accuracy (%) of FGDA+MDD on Office-31 for UDA
(ResNet-50)

3. Sensitivity Analysis for Adversarial Loss

We provide the sensitivity analysis for balancing param-
eters of adversarial learning loss, such as A\; and \3. Similar
to the original adversarial domain adaptation [2], the above
balancing parameters are changed with the following for-

mula
2

14 exp(—7 - 1oo55)
where v = 10 as empirically used in the experiments,
t is the number of iteration in training, and r is a de-
fined parameter for controlling the combination ratio be-
tween our adversarial loss ﬁadv and feature-based adversar-
ial loss £ f44q. For convenience, in part of implementation,
A3 = 0.5 means » = 0.5 in A3.

Here, we couple our FGDA with MDD [4] and conduct
experiments on the Office-31 dataset to analyze the sensi-
tivity of Ay and A3. Specifically, we select r of A1 from
[0.25,0.50,0.75,1.00, 1.25], and keep = 0.5 of A3. As
shown in Table 1, there is a positive correlation between ac-
curacy and value of r in A1, and best results are achieved
when r < 1.

-1, (10)
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