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1. Proof of Theorems 1 and 2
Theorem 1 Let G be a fixed representation function

from X to F , and H be a hypothesis space of VC-dimension
d. If a random labeled sample of size m is generated by ap-
plying G to a Ds - i.i.d. The feature f is drawn from D̃S

or D̃T with corresponding label y. Denote that ŨS , ŨT are
the set of unlabeled samples of size m′ each, drawn from
D̃S and D̃T respectively. Then with the probability at least
1− δ (over the choice of the samples), for every C ∈ H:
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where ϵ̂S(C) is empirical error of source sam-
ples, λ is a very small constant, e represents the
base of the natural logarithm, d∇

(
ŨS , ŨT

)
=

a supDgHD

∣∣∣Ef∈ŨS
Dg(∇fL)− Ef∈ŨT

Dg(∇fL)
∣∣∣ is

the introduced ∇-distance, Dg is the discriminator and
a = 1

minC(f)∈[0,1] ∇CL(C(f),y) . Here L(·) denotes the loss
function.

Theorem 2 When a ≤ 1, our method can obtain a
tighter upper bound than traditional domain adaptation
methods:
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,where
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dH

(
ŨS , ŨT

)
=supDg∈HD

|Ef∈ŨS
Dg(f)−Ef∈ŨT

Dg(f)|.

Proof According to [3, 1], the domian discrepancy is
defined as |ϵT (C,C∗)− ϵS (C,C∗)| where C∗ is the ideal
joint hypothesis defined as C∗ = argminC ϵS(C)+ ϵT (C).
We assume that the most misclassified examples are clas-
sified as wrong classes with low confidence (close to the
decision boundary). Thus, there exists a small perturbation
vector γ ∈ F for each feature f such that C(f + γ) = y,
where y is the true label. The domain discrepancy can be
reformulated as

|ϵT (C,C∗)− ϵS (C,C∗)|
= |Ef∼D̃T

[C(f) ̸= C∗(f)]− Ef∼D̃S
[C(f) ̸= C∗(f)] |

= |Ef∼D̃T
[C(f)− C∗(f)]− Ef∼D̃S

[C(f)− C∗(f)] |
= |Ef∼D̃T

|y − C∗(f) + C(f)− C(f + γ)|
− Ef∼D̃S

|y − C∗(f) + C(f)− C(f + γ)| |
≤ |Ef∼D̃T

|y − C∗(f)| − Ef∼D̃S
|y − C∗(f)|

+ Ef∼D̃T
|C(f)− C(f + γ)|

− Ef∼D̃S
|C(f)− C(f + γ)| |

≤ |Ef∼D̃T
|y − C∗(f)| − Ef∼D̃S

|y − C∗(f)| |
+ |Ef∼D̃T

|C(f)− C(f + γ)|
− Ef∼D̃S

|C(f)− C(f + γ)| |.
(2)

Since the ideal joint hypothesis C∗ is expected
to minimize the joint error on two domains,∣∣∣Ef∼D̃T

|y − C∗(f)| − Ef∼D̃S
|y − C∗(f)|

∣∣∣ should
be a very small constant and we treat it as zero. Then, we



reformulate the bound of target error in [3, 1] as

ϵT (C) ≤ ϵS + λ+ |ϵT (C,C∗)− ϵS (C,C∗)|
≤ ϵS + λ

+ |Ef∼D̃T
|C(f + γ)− C(f)|

− Ef∼D̃S
|C(f + γ)− C(f)| |.

(3)

we can find b = min
C(f)∈[0,1]

∇CL(C(f), y) and ignore the

second and higher order terms in Taylor’s expansion of
L(C(f+γ), y) (γ are small and we can regularize the func-
tion to be with the small second order term). Then, we have

b|C(f + γ)− C(f)| ≤ |L(C(f + γ, y))− L(C(f , y))|
= |γ∇fL| .

(4)
By defining the a = 1

b , we obtain

|C(f+γ)−C(f)| ≤ a|L(C(f+γ, y))−L(C(f , y))|, (5)

such that

|Ef∼D̃T
|C(f + γ)− C(f)| − Ef∼D̃S

|C(f + γ)− C(f)| |
= a|Ef∼D̃S

|γ∇fL| − Ef∼D̃T
|γ∇fL| .|

(6)
Accordingly, the probabilistic bound of target error is
changed to

ϵT (C) ≤ ϵS + λ+ |ϵT (C,C∗)− ϵS (C,C∗)|
≤ ϵS + λ

+ a|Ef∼D̃S
|γ∇fL| − Ef∼D̃T

|γ∇fL| |

≤ ϵS + λ+ d∇(D̃S , D̃T ),

(7)

where the d∇(D̃S , D̃T ) is a proposed ∇-distance to upper
bound the target error. Since |C(f + γ) − C(f)| ∈ [0, 1],
we define a distance

d∇

(
D̃S , D̃T

)
=

a sup
Dg∈HD

|Ef∈DSDg(∇fL)− Ef∈DT Dg(∇fL)| ,
(8)

where Dg is a binary classifier of a hypothesis space HD

over ∇fL.

Next, we prove that the proposed ∇-distance enables a
tighter bound of target error compared with original theory
[1]. Considering that ∇fL can be obtained by a function
∇fL = D1(f) with respect to f (D1 ∈ H1 : Rd → Rd ),

(a) CDAN-E (b) FGDA (w/o JR, SP) (c) FGDA

(d) CDAN-E (e) FGDA (w/o JR, SP) (f) FGDA

Figure 1. t-SNE visualizations of feature distribution and gradi-
ent distribution for CDAN-E, proposed FGDA (w/o JR, SP) and
FGDA on the A→W task of the Office-31 dataset. Blue and red
points denote the source and target domain samples respectively.

when a ≤ 1, we can re-write Equ. 7 as

ϵT (C) ≤ ϵS + λ+ |ϵT (C,C∗)− ϵS (C,C∗)|
≤ ϵS + λ

+ a sup
Dg∈HD

|Ef∈DSDg(D1(f))

− Ef∈DT Dg(D1(f))|
≤ ϵS + λ

+ a sup
Dg∈HD,Df∈H1

|Ef∈DSDg(Df (f))

− Ef∈DT Dg(Df (f))|
≤ ϵS + λ+ dH(D̃S , D̃T ).

(9)

where Df ∈ H1 : Rd → Rd and dH

(
ŨS , ŨT

)
=

a supDg∈HD
|Ef∈ŨS

Dg(f)− Ef∈ŨT
Dg(f)|.

2. Visualization Results

We provide additional visualization results to demon-
strate the effectiveness of the proposed method, as shown in
Fig. 1. Although the CDAN-E [3] conditions on a discrimi-
nator on the joint variable of feature and classifier’s output,
its feature and gradient distribution are still not well aligned.
Utilizing merely gradient discriminator in FGDA (w/o JR,
SP), the gradient distribution discrepancy is reduced such
that the domain shift is reduced. In FGDA, target discrimi-
native feature is obtained due to the gradient regularization
and soft supervised learning of gradient alignment, compar-
ing with CDAN-E.



r (in λ1) A-W D-W A-D D-A W-A
0.25 95.2 98.6 94.8 75.8 76.5
0.50 95.3 98.9 95.4 77.7 76.1
0.75 95.7 98.9 95.6 77.6 76.0
1.00 95.1 98.7 95.4 78.1 76.5
1.25 94.5 98.7 95.2 76.4 76.4

Table 1. Accuracy (%) of FGDA+MDD on Office-31 for UDA
(ResNet-50)

3. Sensitivity Analysis for Adversarial Loss
We provide the sensitivity analysis for balancing param-

eters of adversarial learning loss, such as λ1 and λ3. Similar
to the original adversarial domain adaptation [2], the above
balancing parameters are changed with the following for-
mula

λ =
2

1 + exp(−γ · r·t
10000 )

− 1, (10)

where γ = 10 as empirically used in the experiments,
t is the number of iteration in training, and r is a de-
fined parameter for controlling the combination ratio be-
tween our adversarial loss L̃adv and feature-based adversar-
ial loss Lfada. For convenience, in part of implementation,
λ3 = 0.5 means r = 0.5 in λ3.

Here, we couple our FGDA with MDD [4] and conduct
experiments on the Office-31 dataset to analyze the sensi-
tivity of λ1 and λ3. Specifically, we select r of λ1 from
[0.25, 0.50, 0.75, 1.00, 1.25], and keep r = 0.5 of λ3. As
shown in Table 1, there is a positive correlation between ac-
curacy and value of r in λ1, and best results are achieved
when r ≤ 1.
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