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ENCODER in out kernel stride pad

Conv3d + BN3d + ELU C 32 (1,5,5) 1 (0,2,2)
AvgPool3d (1,2,2) (1,2,2) 0
Conv3d + BN3d + ELU 32 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)
AvgPool3d (2,2,2) (2,2,2) 0
Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)
AvgPool3d (2,2,2) (2,2,2) 0
Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)
AvgPool3d (1,2,2) (1,2,2) 0
Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

DECODER

Interpolate (2,1,1)
Conv3d + BN3d + ELU 64 64 (3,1,1) 1 (1,0,0)
Interpolate (2,1,1)
Conv3d + BN3d + ELU 64 64 (3,1,1) 1 (1,0,0)
AdaptiveAvgPool3d (-,1,1)
Conv3d 64 1 (1,1,1) 1 (0,0,0)

Table 1. Modified PhysNet-3DCNN architecture. The architec-
ture follows an encoder-decoder structure with 3D convolutions to
represent patterns through time; “s” corresponds to stride, “p” to
padding, “C” to the number of input channels.

A. Appendix

A1. Model Architecture
For the PPG estimator we use a modified 3D-CNN ver-

sion of PhysNet [5] as described in Table 1. Our modi-
fication is to use interpolation and convolution in the de-
coder instead of transposed convolution, which we found to
reduce the aliasing artifacts that were present in the origi-
nal model. For the saliency sampler, we use the architec-
ture described in [2], swapping out the saliency network for
the shallower model shown in Table 2 which was found to

*Equal contribution

SALIENCY NET in out kernel stride pad

Conv2d + BN2d + ReLU C 64 (1,7,7) 2 3
MaxPool (1,3,3) 2 1
BasicBlock 64 64 1
BasicBlock 64 64 1
BasicBlock 64 64 1

Table 2. Saliency Network. The architecture follows a Resnet-
18 structure, truncated after layer1, with pre-trained ImageNet
weights. Each BasicBlock consists of a 3 × 3 convolution, 2D
batch normalization, ReLU, 3× 3 convolution, 2D batch normal-
ization, addition with the BasicBlock input (the residual) and a
final ReLU. For further details see [1].

be sufficient for detecting facial parts (by the nature of the
saliency maps learned).

A2. Other Loss Functions/Metrics
Pearson’s correlation (PC) is commonly used as a loss

and metric in other rPPG works (e.g. [5]). While it is scale
invariant, it assumes that there is perfect temporal synchro-
nization between the ground truth and observed data. Oth-
erwise the network must be capable of learning a temporal
offset, assuming the offset is constant.

Signal-to-noise ratio (SNR) is another baseline used in
prior rPPG works (e.g. [3]) which train to match a ground
truth heart rate instead of the full PPG signal. It relaxes
the alignment assumption by expressing the loss in the fre-
quency domain using the power spectral density (PSD). It
calculates the amount of power in the target heart rate fre-
quency bin of the PSD and compares it to the total other
power in the PPG signal. Because of this, it assumes that all
other frequencies should be zeroed out, which may remove
meaningful harmonics.

A3. Dataset PPG Performance
To supplement Table 3 from the main paper, we present

further results on the four PPG datasets in Table 3, using



PURE COHFACE MR-NIRP-Car UBFC

Method PC MCC SNR PC MCC SNR PC MCC SNR PC MCC SNR

Mean -0.01 0.12 -9.6 -0.01 0.14 -9.2 -0.02 0.36 5.6 0.00 0.10 -13.0
Median 0.00 0.08 -10.9 0.00 0.14 -9.2 0.00 0.30 1.4 0.01 0.10 -13.5

Our Supervised 0.54 0.90 18.1 0.23 0.57 15.4 0.52 0.79 17.8 0.17 0.64 13.3
With Saliency 0.58 0.90 18.1 0.30 0.57 15.5 0.42 0.78 17.9 0.15 0.64 13.3

Our Contrastive 0.02 0.79 19.4 -0.19 0.65 17.9 0.18 0.74 19.3 0.03 0.63 14.3
With Saliency 0.00 0.80 19.5 -0.04 0.65 17.9 0.27 0.74 18.8 0.01 0.61 13.3

Table 3. Experiment PPG Statistics. PPG statistics on all datasets using our supervised and contrastive systems, with and without
saliency. We compare with both a mean and median baseline. The top performing system varies greatly depending on the dataset and
statistic. However, the contrastive systems often perform comparable or better than the supervised ones when considering sync-robust
metrics (without the need for ground truth).

metrics which capture statistics of predicted vs. ground truth
PPG signals (as opposed to the final predicted heart rate).
We again show the results of both our supervised and con-
trastive systems, with and without the use of a saliency sam-
pler. However, as these PPG statistics are not given for the
other cited baseline systems, we instead provide only the
mean and median methods as baselines.

We calculate the Pearson’s correlation (PC), Max cross-
correlation (MCC), and Signal-to-noise ratio (SNR) of the
predicted versus ground truth PPG signals. While we
present PC for comparison, we expect MCC and SNR to
be better measures of system performance, as they are cal-
culated in the frequency domain. This makes them more ro-
bust to desynchronization between predictions and ground
truth. Supervised training uses MCC as a loss function and
validation metric, while contrastive training works without
guiding ground truth. Because of this, it is possible for ei-
ther system to learn a random phase offset, as long as the
overall frequency information is predictive of heart rate.

PC. Across all dataset results, we note that supervised
training attains the highest PC. Even though desynchroniza-
tion is not penalized during training, the model likely learns
the easiest mapping between video and ground truth - one
without an additional offset. This could indicate that the
datasets only have minimal offset between observation and
ground truth.

MCC. We also note that supervised training tends to
result in higher MCC, which is likely due to the guiding
ground truth. Without ground truth, the contrastive method
is only able to learn the periodic signal visible in the input
video. The supervised method would be able to learn to
replicate any repeating artifacts of the biometric PPG sen-
sor, producing a stronger MCC. However, the overall per-
formance on the contrastive COHFACE model is substan-
tially better than that of the supervised one, as seen in the
heart rate results. This likely lessens the relative impact
of PPG artifacts, when compared with other datasets with
closer performance.
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Figure 1. Loss Function Robustness to Desynchronized Ground
Truth. The performance of supervised training on COHFACE
with varying amounts of random desynchronization applied be-
tween the video and the ground truth PPG signal. We show the
performance of 3 loss functions (PC, SNR, MCC) against a Mean
model baseline (which estimates the mean heart rate in the test
set). Unlike other loss functions, MCC is shown to be robust to
ground truth desynchronization.

SNR. Unlike MCC, SNR penalizes the learning of all
other frequencies besides heart rate. So perfect PPG pre-
diction can result in lower SNR performance, if the PPG
includes other frequencies. Because the supervised training
uses MCC as a loss function and the ground truth isn’t a per-
fect sine wave, this encourages sub-optimal SNR. We see
this reflected in the results, with contrastive learning having
a higher SNR across all datasets.

A4. Loss Function Robustness

In Section A3, we examined how the metrics PC, MCC,
and SNR can be used to gauge the performance of PPG pre-
diction versus ground truth. In this section, we examine
how each metric performs as a loss function during super-
vised training, as well as the impact of desynchronization
between the observed video and the ground truth PPG.



We use the COHFACE dataset and compare versus a
baseline that always predicts the mean heart rate in the test
set. We select the maximum amount of injected synchro-
nization error (Omax) to range between 0 and 16 seconds.
Each time a new clip is drawn during training, a random
offset is chosen between −Omax and Omax using uniform
sampling. We then shift the ground truth PPG by the se-
lected offset using neighboring data. We train a model using
the supervised pipeline and the selected loss function. We
calculate the selected loss on held-out validation data each
epoch and use the model with the lowest loss at test time.
In this experiment, we do not use the saliency sampler since
the purpose is to explore the robustness of supervised loss
functions.

Figure 1 shows the RMSE performance of our super-
vised system for different Omax and loss functions. With-
out injected desynchronization, we find that PC and MCC
perform similarly. This likely indicates that ground truth
in COHFACE is consistently aligned with the video, ei-
ther with a minimal or constant (learnable) offset. Be-
cause MCC is the offset-adjusted version of PC, we note
that they have similar performance without the presence of
offsets. However, when increasing amounts of synchro-
nization error are applied, the performance of the system
trained with PC quickly degrades, while the one trained
with MCC remains relatively stable. We also note that SNR
has consistently poor performance at all offsets, indicating
that it is a weaker supervisory signal for rPPG compared
to correlation-based measures. Based on these results, we
favored MCC as a loss function for supervised training,
particularly if synchronization issues were suspected to be
present in the training data.

A5. Dataset Statistics

Our approach relies on the assumption (Assumption 2 in
the main paper) that “the signal of interest typically does not
vary rapidly over short time intervals: the heart rate of a per-
son at time t is similar to their heart rate at t+W , where W
is in the order of seconds.” In Fig. 2, we show the distribu-
tion of heart rate variation at different time intervals within
each of the four datasets. With approximately 80%-100%
certainty, depending on the dataset, one can assume that the
heart rate at t+10s is within 10bpm of the heart rate at time
t. All datasets consistently have a median variation of about
2.5bpm over a 10s period. UBFC was found to contain the
most heart rate variability of the datasets examined.

A6. Unsupervised Learning Protocol

In our contrastive experiments, since our method does
not utilize ground truth labels, we fold validation data into
the training set. In other words, in Table 3 of the main paper,
the contrastive models “see” a little more training data than

2.5 5.0 7.5 10.00.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ax

. H
R 

di
ff.

 (b
pm

)

PURE

2.5 5.0 7.5 10.00.0

2.5

5.0

7.5

10.0

12.5

15.0 UBFC

2.5 5.0 7.5 10.0
Time interval (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ax

. H
R 

di
ff.

 (b
pm

)

COHFACE

2.5 5.0 7.5 10.0
Time interval (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0 MR-NIRP-Car
95%
50%
5%

Figure 2. Distribution of heart rate differences at different time
intervals apart. The 5%, 50% and 95% quantile lines are shown.

the supervised models. When validation data is excluded
from contrastive training, we found test RMSE to worsen by
0.7 bpm on average across datasets. This shows the value
of larger training sets when training with contrastive loss.
Exploring the trade off between training data size and model
performance is a topic for future work.

A7. Additional Baseline
While we selected the strongest comparable baseline we

could find for each dataset, one reviewer requested the ad-
dition of the Siamese CNN proposed by [4]. However, we
note that this work is not directly comparable for several
reasons, in particular: (i) for UBFC evaluation, we do not
pre-train our model on COHFACE; (ii) the final results re-
ported in [4] use a 20s (COHFACE) and 30s (UBFC, PURE)
input time window, while we use a shorter 10s window con-
sistently across datasets. In Table 2 of [4] the effect of
window length is shown for COHFACE: they report 1.8
RMSE with window length 400, and 4.7 with 256. Our
self-supervised baseline achieved 4.6 RMSE with window
length 300 (25 run average). This shows that over a range of
datasets we can achieve performance comparable to super-
vised deep learning methods (e.g. [4]) using our approach
without annotations.

A8. Sensitivity to Regularization Parameters
In Table 4 we show the relative performance of a con-

trastive model trained on the UBFC dataset as the saliency
sparsity regularization weight, ws, and temporal regulariza-
tion weight, wt, are varied in the range [0, 0.1, 1, 10]. We
find that model performance is not significantly impacted.
The saliency map output is most visible when higher values
of the sparsity term ws are used, although we observe that
the best parameters can depend on variables such as dataset
and resolution.



RMSE change (↓) MAE change (↓) PC change (↑)

ws \ wt 0 0.1 1 10 0 0.1 1 10 0 0.1 1 10

0 - 1.4 1.4 -0.9 - 0.7 0.6 -0.2 - -0.06 -0.06 0.02
0.1 3.1 0.8 -0.8 0.1 1.3 0.4 -0.2 0.0 -0.18 -0.04 0.02 0.00

1 -0.8 0.0 -0.7 -0.4 -0.2 0.0 -0.2 -0.1 0.02 0.00 0.02 0.01
10 0.2 0.6 0.4 -0.9 0.0 0.2 0.2 -0.2 0.00 -0.02 -0.01 0.03

Table 4. Sensitivity of saliency sampler regularization on rPPG performance for a contrastively trained model on UBFC. As with
Table 3 from the main paper, we average the results of five runs on different folds with held-out subjects, and report the performance
differences relative to the zero regularization case, (ws, wt) = (0,0). rPPG performance tends to improve when the regularization parameters
are set in the range [1,10], although the best parameters depend on variables such as dataset and resolution.
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