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A. More Experimental Results
A.1. Study on Transformer-based Strong Baseline

A transformer-based strong baseline with a few critical
improvements has been introduced in Section 3.1 of the
main paper. In this section, hyper-parameters and the
settings for training such a baseline model will be analyzed
in detail. Ablation studies are shown in Table 1 for
performance on MSMT17 and Veri-776 with different
variations of the training settings.

Initialization and hyper-parameters. For our
experiments, we initialize the pure transformer with ViT or
DeiT ImageNet pre-trained weights and we initialize the
weights for the SIE with a truncated normal distribution
[6]. Compared with ViT, DeiT is more sensitive to hyper-
parameter settings. For the training of DeiT, we use a
learning rate of 0.05 on MSMT17 and a high random
erasing probability with 0.8 on each dataset to avoid
overfitting. Other hyper-parameters settings are the same
with ViT.

Optimizer. Transformers are sensitive to the choice of
the optimizer. Directly applying Adam optimizer with the
hyper-parameters commonly used in ReID community [9]
to transformer-based models will cause a significant drop in
performance. AdamW [&] is a commonly used optimizer
for training transformer-based models, with much better
performance compared with Adam. The best results are
actually achieved by SGD in our experiments.

Network Configuration. Position embeddings
incorporate crucial spatial information which provides a
significant boost in performance and is one of the key
ingredients of our proposed training procedure. Without
the position embeddings, the performance decreases by
38.6% mAP and 10.2% mAP on MSMT17 and VeRi-776,
respectively.

Introducing stochastic depth [7] can boost the mAP
performance by about 1%, and it has also been proved
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to facilitate the convergence of transformer, especially for
those deep ones [4, 5]. Regarding other regularization
methods, adding either drop out or attention drop out will
result in performance drop. In our experiments, we set all
the probability of regularization methods as 0.1.

Loss Function. Different choices of loss functions have
been compared in the bottom section of Table 1. The soft
version of triplet loss provides 0.7% mAP improvement
on MSMT17 compared with the regular triplet loss.
Introducing label smoothing is harmful to performance,
even though it has been a widely adopted trick. Therefore,
the best combination for loss functions is soft triplet loss
and cross entropy loss without label smoothing.

A.2. More Ablation Studies of JPM and SIE

In the main paper, we have demonstrated the
effectiveness of using JPM and SIE based on the Baseline
(ViT-B/16). More results about JPM and SIE are shown
in Table 2 and Table 3 respectively, with the Baseline
ViT-B/164—_12, which is supposed to have better feature
representation ability and higher performance than ViT-
B/16. From Table 2, we observe that: (1) The proposed
JPM performs better with the rearrange schemes, indicating
that the shift and patch shuffle operation help the model
learn more discriminative features which are robust against
perturbations. (2) The JPM module provides a consistent
performance improvement over the baselines, no matter
the baseline is ViT-B/16 or the stronger ViT-B/165—;2,
demonstrating the effectiveness of the proposed JPM.

Similar conclusions can be made from Table 3. (1) We
make better use of the viewpoint and camera information so
that they are complementary with each other and combining
them leads to the best performance. (2) Introducing SIE
provides consistent improvement over the baselines of
either ViT-B/16 or ViT-B/164,_15.

B. Analysis on Rearranging Patches in JPM

Although transformers can capture the global
information in the image very well, a patch token still



MSMT17 VeRi-776
Method OPT PE SP DO ADO STL LS AP - AP -
ViT-B/16 Baseline | SGD ¢ < X X /X 61.0 81.8 782 96.5

Ontimier Adam 374 (-24.6) 602(21.6) | 658 (-124) 91.7 (-4.8)
P AdamW 60.6 (-0.4)  81.7(-0.1) | 78.0(-02)  96.5 (-0.0)
Network X 224 (-38.6) 383 (435) | 68.0(-102) 928 (:3.7)
c g‘twor, X 599 (-1.1) 802 (-1.6) | 77.2(-1.0)  96.1 (-0.4)
onfiguration v 60.0 (-1.0)  80.7(-1.1) | 78.0(-02) 96.3(-0.2)
v 58.0(-3.0) 78.8(-3.0) | 743(-3.9) 949(-1.6)
. X 60.3(-0.7) 813 (-0.5) | 77.5(-0.7) 956 (-0.9)
Loss Function V| 598(¢12)  804(-14) | 77.4(-0.8) 96.5(-0.0)

Table 1: Ablation study about training settings on MSMT17 and VeRi-776. The first row corresponds to the default configuration employed
by our transformer-based strong baseline (ViT-B/16 as default backbones). The symbols v" and X indicate that the corresponding setting
is included or excluded, respectively. mAP(%) and R1(%) accuracy scores are reported. The abbreviations OPT, PE, SP, DO, ADO, STL,
LS denote Optimizer, Position Embedding, Stochastic Depth [7], Drop Out, Attention Drop Out, Soft Triplet Loss, Label Smoothing,

respectively.

MSMT17 VeRi-776
Backbone #groups | mAP Rl mAP Rl
Baseline (ViT-B/16) - 61.0 81.8 | 782 96.5
+JPM 1 629 825 | 786 970
+IPM 2 62.8 821 | 79.1 964
+IPM 4 63.6 825 | 792 96.8
+JPM w/o rearrange 4 63.1 824 | 79.0 96.7
+JPM w/o local 4 63.5 825 | 79.1  96.6
Baseline (ViT-B/165—12) - 644 835 | 79.0 965
+JPM 4 66.5 84.8 | 80.0 97.0
+JPM w/o rearrange 4 66.1 845 | 79.6 96.7
+JPM w/o local 4 663 845 | 798 96.8

Table 2:  Detailed ablation study of jigsaw patch module
(JPM). ‘w/o rearrange’ means the patch sequences are split into
subsequences without rearrangement. ‘w/o local’ means we
evaluate the global feature without concatenating local features.

MSMT17 VeRi-776
Method Camera View | mAP R1 mAP R1
Bascline 610 818 | 782 965
asell
! v 624 819 | 787 97.1
(ViT-B/16) v ; - | 785 969

v v - - | 796 969

Basell 644 835 | 790 965
) aj‘i 6‘“" v 659 841 | 794 964
(VIT-B/165=12) v ; - | 793 970
v v . - | 803 969

Table 3: Detailed ablation study of side information embeddings
(SIE). Experiments of viewpoint information are only conducted
on VeRi-776 as the person RelD datasets do not provide viewpoint
annotations. The symbols v and X indicate that the corresponding
information is included or excluded.

has a strong correlation with the corresponding patch.
ViT-FRCNN [2] shows that the output embeddings of
the last layer can be reshaped as a spatial feature map
that includes location information. In other words, if we
directly divide the original patch embeddings into k parts,

Part 1

Part 2

Part 3

(a) Original (b) w/o rearrange (¢) w/ rearrange

Figure 1: Visualization of the learned attention masks for local
features by JPM module. Higher weight results in higher
brightness of the region. Note that we visualize the learned
attention weights which are averaged among attention heads in the
last layer. Faces in the images are masked for anonymization.

each part may only consider a part of the continuous patch
embeddings. Therefore, to better capture the long-range
dependencies, we rearrange the patch embeddings and then
re-group them into different parts, each of which contains
several random patch embeddings of an entire image. In
this way, the JPM module help to learn robust features
with improved discrimination ability and more diversified
coverage.

To verify the above point, we visualize the learned
attention of local features [f!, f2, ..., ff] (k = 4 in our



cases) by JPM module in Figure 1. Brighter region means
higher corresponding weights. Several observations can be
made from Figure 1: (1) The attention learned by the “JPM
w/o rearrange” tends to focus on limited receptive fields
(i.e. the range of the corresponding patch sequences) due
to global sequences being split into several isolated sub-
sequences. For example, “Part 1” mainly pays attention
to the head of a person, and “Part 4” is mainly focused
around the bottom area. (2) In contrast, “JPM w/ rearrange”
is able to capture long-range dependencies and each part
has attention responses across the whole image because it
is forced to extend its scope to the whole image through the
rearranging operation. (3) According to the superior ReID
performance and the intuitive visualization of rearranging
effect, JPM is proved to not only capture more details at
finer granularities but also learn robust and discriminative
representations in the global context.

C. Performances of Light-weight Transformer-
based and CNN-based Methods

In order to further verify the effectiveness of the
proposed method, we compare commonly used light-weight
CNN backbones in RelD practical applications, such as
e.g., moblenet-v3, shufflenet to pure transformer with
comparable parameters in Table 4. we conduct light-
weight CNN-based methods based on BoT and DeiT-
Tiny (ImageNet-1K pretrained) based on our transformer-
based baseline with fair experimental settings. “DeiT-Tiny”
shows better performance compared to the other two light-
weight CNN-based methods with comparable parameters
and speed (inference time per image).

MSMT17 DukeMTMC

Backbone mAP Rl | mAP Rl

#params | Speed

DeiT-Tiny 5.72M 9.6ms 458 685 | 722 853

MobileNet-v3 5.48M 10.Ims | 394 644 | 674 8l1.1
ShuffleNet-v2 7.40M 9.2ms 424 665 | 71.0 84.1

Table 4: Comparison of light-weight transformer-based and CNN-
based methods.

D. Comparisons of Model Complexity

We analyze model complexity between TransReID and
MGNI[I1] in the main paper. Here, we give more
detailed experimental results in Table 5. TransRelD*
(ViT/16(s=12)) has comparable parameters with some
powerful approaches with ResNet50 backbone (e.g.
MGN][11], ABD-Net[3] and DSA-reID[1]). TransRelID
achieves a better trade-off between accuracy and speed
under the same settings.

E. More Visualization of Attention Maps

In the main paper, we use Grad-CAM to visualize the
gradient responses of our schemes, CNN-based methods,

MSMT17 DukeMTMC

Method #params | Speed AP RI AP RI
TransReID* 1029M | 15.6ms | 694 862 | 82.6  90.7
MGN 68.8M 16.2ms - - 784  88.7
ABD-Net 69.2M 149ms | 60.8 823 | 78.6 89.0
DSA-relD 187.8M | 34.7ms - - 743  86.2

Table 5: Comparisons of model complexity among different state-
of-the-art methods.

and CNN+attention methods. Following the similar setup,
Figure 2 shows more visualization results, with the similar
conclusion that transformer-based methods capture global
context information and more discriminative parts, which
are further enhanced in our proposed TransRelD for better
performance.
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Figure 2: Grad-CAM [10] visualization of attention maps. (a) Original images, (b) CNN-based methods, (c) CNN+Attention methods, (d)
Transformer-based baseline, (e) TransReID w/o rearrange, (f) TransRelD. Faces in the images are masked for anonymization.



