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Supplementary Material

Impact of Memory Size. Figure | shows the impact of
the memory size, i.e. the number of items /V in the memory
bank to the detection performance. As the memory size in-
creases, AUROC gets steadily improved, and saturates after
500. Notably, increasing the memory size further does not
lead to an obvious performance degradation. It indicates
that the proposed block-wise memory module enjoys the
benefit of good reconstruction on normal samples without
worrying about learning an identity mapping, which would
not be possible by simply increasing the model size.

Experiments on Video Datasets Our model is designed
for anomaly detection in images, but to validate the gen-
eralization of our method, we conduct experiments on two
real-world video anomaly detection datasets, i.e. UCSD-
Ped2 [3] and CUHK Avenue [4]. Following the experimen-
tal setting in [0], we resize each frame of the video into the
size of 256 x 256, and normalize the pixel values to the
range of [—1,1]. rp, 7y, 7. and the memory bank size N
are empirically set to 16, 16, 1 and 2000. The model is op-
timized via the Adam optimizer with a fixed learning rate
of 2¢74, a weight decay of 0, momentums of 5; = 0.9,
B2 = 0.999, and a batch size of 4 for 60 epochs on both
UCSD Ped2 and CUHK Avenue. As shown in Table 1, com-
pared with other reconstruction-based methods, our model
can still achieve competitive results. It is worth noting that
our model has not been tailored for video data as MemAE
does, where 3D convolution is utilized to exploit the tem-
poral information in videos. We leave such improvement as
future work.

Structure of DAAD Table 2 shows the structure of
DAAD. We use the skip connection to improve the recon-
struction ability of our model and furthermore utilize the
block-wise memomry module to balance the reconstruction
of the normality and anomaly.
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Figure 1. The AUROC score of DAAD over different memory
sizes on the MVTec AD dataset.

Method\Dataset UCSD-Ped2  Avenue
AE-Conv2D [2] 0.850 0.800
AE-Conv3D [9] 0.912 0.771
TSC [5] 0.910 0.806
StackRNN [5] 0.922 0.817
AbnormalGAN [§] 0.935 -
AE [1] 0.917 0.810
MemAE [1] 0.941 0.833
AE [6] 0.864 0.806
MNAD [6] 0.902 0.828
AE 0.901 0.805
Ours 0.941 0.829

Table 1. Comparison with existing methods on two video datasets
(UCSD-Ped2 and CUHK Avenue) in terms of AUROC.

Structure of the Discriminator Table 3 shows the struc-
ture of the discriminator used in DAAD+. Its architecture
is designed by following the discriminator of DCGAN [7].
The dimension of the flattened output representation from
the feature extractor is 100 if the size of the input image is
256 x 256.



Layer Filter Channels | Input Output
ConvBNReLU 3 x3,sl 64 input enci—1 (H x W)
ConvBNReLU 3% 3,sl 64 enci_1 enci—2 (H x W)
Maxpooling 2x2,s2 | 64 enci—o enci—3 (H/2 x W/2)
BW Memory1 - - enci—s m1 (H/2 x W/2)
ConvBNReLU 3x3,s1 | 128 enci—s enca—1 (H/2 x W/2)
ConvBNReLU 3x3,s1 | 128 enca_1 enco_o (H/2 x W/2)
Maxpooling 2x2,s2 | 128 enca_2 enco_3 (H/4 x W/4)
BW Memory?2 - - enca_3 mo (H/4 x W/4)
ConvBNReLU 3x3,s1 | 256 enca_3 enc3_1 (H/4 x W/4)
ConvBNReLU 3 x 3,sl 256 enc3_1 encs_o (H/4 x W/4)
Maxpooling 2x 2,82 | 256 encz—a encsz_3 (H/8 x W/8)
BW Memory3 - - encs—3 m3 (H/8 x W/8)
ConvBNReLU 3x3,s1 | 512 encs—s enca—1 (H/8 x W/8)
ConvBNReLU 3 x3,sl 512 encs_1 enca—o (H/8 x W/8)
Maxpooling 2x 2,82 | 512 enca—o encs—3 (H/16 x W/16)
BW Memory4 - - enc4_3 my (H/16 x W/16)
ConvBNReLU 3x3,s1 | 1024 my decy—1 (H/16 x W/16)
ConvBNReLU 3x3,s1 | 1024 decs_1 decy_o (H/16 x W/16)
ConvTranspose | 2 x 2,s2 | 512 decs_2 deca_3 (H/8 x W/8)
ConvBNReLU 3 x3,sl 512 [deca—3,ms3] decs_1 (H/8 x W/8)
ConvBNReLU | 3 x 3,51 | 512 decs_1 decs_o (H/8 x W/8)
ConvTranspose | 2 X 2,52 | 256 decs_2 decs_3 (H/4 x W/4)
ConvBNReLU 3x3,s1 | 256 [decz—3,m2] | deca—1 (H/4 x W/4)
ConvBNReLU 3% 3,sl 256 deco_1 deca_o (H/4 x W/4)
ConvTranspose | 2 x 2,s2 | 128 deca_o deca_3 (H/2 x W/2)
ConvBNReLU 3x3,s1 | 128 [deca—z,m1] | deci—1 (H/2 x W/2)
ConvBNReLU 3x3,s1 | 128 deci_1 deci_o (H/2 x W/2)
ConvTranspose 2 X 2,82 64 deci_o deci—_3 (H X W)
ConvBNReLU 3% 3,sl 64 deci_3 headi—1 (H X W)
ConvBNReLU 3% 3,sl 64 headi_1 headi_2 (H X W)
Conv 1x1,sl 3 heady_2 output (H x W)
Table 2. Structure of DAAD.
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Table 3. Structure of the discriminator used in DAAD+.
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