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Supplementary Material

Impact of Memory Size. Figure 1 shows the impact of
the memory size, i.e. the number of items N in the memory
bank to the detection performance. As the memory size in-
creases, AUROC gets steadily improved, and saturates after
500. Notably, increasing the memory size further does not
lead to an obvious performance degradation. It indicates
that the proposed block-wise memory module enjoys the
benefit of good reconstruction on normal samples without
worrying about learning an identity mapping, which would
not be possible by simply increasing the model size.

Experiments on Video Datasets Our model is designed
for anomaly detection in images, but to validate the gen-
eralization of our method, we conduct experiments on two
real-world video anomaly detection datasets, i.e. UCSD-
Ped2 [3] and CUHK Avenue [4]. Following the experimen-
tal setting in [6], we resize each frame of the video into the
size of 256 × 256, and normalize the pixel values to the
range of [−1, 1]. rh, rw, rc and the memory bank size N
are empirically set to 16, 16, 1 and 2000. The model is op-
timized via the Adam optimizer with a fixed learning rate
of 2e−4, a weight decay of 0, momentums of β1 = 0.9,
β2 = 0.999, and a batch size of 4 for 60 epochs on both
UCSD Ped2 and CUHK Avenue. As shown in Table 1, com-
pared with other reconstruction-based methods, our model
can still achieve competitive results. It is worth noting that
our model has not been tailored for video data as MemAE
does, where 3D convolution is utilized to exploit the tem-
poral information in videos. We leave such improvement as
future work.

Structure of DAAD Table 2 shows the structure of
DAAD. We use the skip connection to improve the recon-
struction ability of our model and furthermore utilize the
block-wise memomry module to balance the reconstruction
of the normality and anomaly.
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Figure 1. The AUROC score of DAAD over different memory
sizes on the MVTec AD dataset.

Method\Dataset UCSD-Ped2 Avenue
AE-Conv2D [2] 0.850 0.800
AE-Conv3D [9] 0.912 0.771
TSC [5] 0.910 0.806
StackRNN [5] 0.922 0.817
AbnormalGAN [8] 0.935 -
AE [1] 0.917 0.810
MemAE [1] 0.941 0.833
AE [6] 0.864 0.806
MNAD [6] 0.902 0.828
AE 0.901 0.805
Ours 0.941 0.829

Table 1. Comparison with existing methods on two video datasets
(UCSD-Ped2 and CUHK Avenue) in terms of AUROC.

Structure of the Discriminator Table 3 shows the struc-
ture of the discriminator used in DAAD+. Its architecture
is designed by following the discriminator of DCGAN [7].
The dimension of the flattened output representation from
the feature extractor is 100 if the size of the input image is
256× 256.
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Layer Filter Channels Input Output
ConvBNReLU 3× 3, s1 64 input enc1−1 (H ×W )
ConvBNReLU 3× 3, s1 64 enc1−1 enc1−2 (H ×W )
Maxpooling 2× 2, s2 64 enc1−2 enc1−3 (H/2×W/2)
BW Memory1 - - enc1−3 m1 (H/2×W/2)
ConvBNReLU 3× 3, s1 128 enc1−3 enc2−1 (H/2×W/2)
ConvBNReLU 3× 3, s1 128 enc2−1 enc2−2 (H/2×W/2)
Maxpooling 2× 2, s2 128 enc2−2 enc2−3 (H/4×W/4)
BW Memory2 - - enc2−3 m2 (H/4×W/4)
ConvBNReLU 3× 3, s1 256 enc2−3 enc3−1 (H/4×W/4)
ConvBNReLU 3× 3, s1 256 enc3−1 enc3−2 (H/4×W/4)
Maxpooling 2× 2, s2 256 enc3−2 enc3−3 (H/8×W/8)
BW Memory3 - - enc3−3 m3 (H/8×W/8)
ConvBNReLU 3× 3, s1 512 enc3−3 enc4−1 (H/8×W/8)
ConvBNReLU 3× 3, s1 512 enc4−1 enc4−2 (H/8×W/8)
Maxpooling 2× 2, s2 512 enc4−2 enc4−3 (H/16×W/16)
BW Memory4 - - enc4−3 m4 (H/16×W/16)
ConvBNReLU 3× 3, s1 1024 m4 dec4−1 (H/16×W/16)
ConvBNReLU 3× 3, s1 1024 dec4−1 dec4−2 (H/16×W/16)
ConvTranspose 2× 2, s2 512 dec4−2 dec4−3 (H/8×W/8)
ConvBNReLU 3× 3, s1 512 [dec4−3,m3] dec3−1 (H/8×W/8)
ConvBNReLU 3× 3, s1 512 dec3−1 dec3−2 (H/8×W/8)
ConvTranspose 2× 2, s2 256 dec3−2 dec3−3 (H/4×W/4)
ConvBNReLU 3× 3, s1 256 [dec3−3,m2] dec2−1 (H/4×W/4)
ConvBNReLU 3× 3, s1 256 dec2−1 dec2−2 (H/4×W/4)
ConvTranspose 2× 2, s2 128 dec2−2 dec2−3 (H/2×W/2)
ConvBNReLU 3× 3, s1 128 [dec2−3,m1] dec1−1 (H/2×W/2)
ConvBNReLU 3× 3, s1 128 dec1−1 dec1−2 (H/2×W/2)
ConvTranspose 2× 2, s2 64 dec1−2 dec1−3 (H ×W )
ConvBNReLU 3× 3, s1 64 dec1−3 head1−1 (H ×W )
ConvBNReLU 3× 3, s1 64 head1−1 head1−2 (H ×W )
Conv 1× 1, s1 3 head1−2 output (H ×W )

Table 2. Structure of DAAD.

Name Layer Filter Channels Stride

Feature
Extractor

Conv 4× 4 64 2
LeakyReLU negative slope = 0.2

Conv 4× 4 128 2
BatchNorm -
LeakyReLU negative slope = 0.2

Conv 4× 4 256 2
BatchNorm -
LeakyReLU negative slope = 0.2

Conv 4× 4 512 2
BatchNorm -
LeakyReLU negative slope = 0.2

Conv 4× 4 1024 2
BatchNorm -
LeakyReLU negative slope = 0.2

Conv 4× 4 2048 2
BatchNorm -
LeakyReLU negative slope = 0.2

Conv 4× 4 100 1

Classifier Conv 3× 3 1 1
Sigmoid

Table 3. Structure of the discriminator used in DAAD+.
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