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The supplementary material is organized as follows:
Section 1 presents additional qualitative results for the
KITTI [5] dataset; Section 2 shows more results on the
NYU-Depth-v2; Section 3 experiments with an in-house
dataset namely OuKi; and Section 4 defines the evalua-
tion metrics. We also include a video that demonstrates
the depth estimation performance on the KITTI and OuKi
dataset using extremely sparse sets of 3D points.

1. Additional qualitative results on KITTI
This section provides further results for different spar-

sity on KITTI. Figure 1 and 2 shows the results for our
method and for [3, 1] using a varying number of input 3D
points. The proposed method clearly produces depth maps
with less errors than state-of-the-art approaches especially
with a small number of input 3D points. These results sug-
gest that high-quality depth maps can be obtained by using
only a few LiDAR points enabling more cost efficient solu-
tions.

2. Additional results on NYU-Depth-v2
Figure 3 presents additional results for our method and

NLSPN [3] on the NYU-Depth-v2 dataset [4] using a vary-
ing number of randomly selected input points. The pro-
posed method preserves both coarse and fine structures in
all tested cases.

3. Experiment with OuKi dataset
We utilized a Kinect-v2 or an Android phone to record a

set of videos, namely OuKi, to further assess the generaliza-
tion properties of the proposed method. This dataset will be
made publicly available upon the publication of the paper.

Dense depth prediction using COLMAP points. The
OuKi test set consists of 597 RGB frames with ground truth
depth maps from indoor environments. The frames are pre-
processed with COLMAP to obtain the camera poses and
the sparse 3D point cloud. Table 1 contains the performance
metrics for our method, NLSPN [3] and MVSNet [6] using

the collected dataset. Compared to the NYU-v2 results, we
obtain similar performance, while NLSPN [3] and MVS-
Net [6] perform worse. These results indicate that the pro-
posed method can generalise well to environments unseen
at the training time.

Table 1. Evaluation results on OuKi dataset. Metrics with ↓ mean
lower is better and ↑ mean higher is better.

Method #3D pts #params REL↓ RMSE↓ δ1↑
NLSPN [3] 32 25.8M 0.340 0.915 0.635
NLSPN [3] 128 25.8M 0.232 0.534 0.811
MVSNet [6] - 124.5M 0.062 0.307 0.933
Ours 32 8.7M 0.096 0.313 0.907
Ours 128 8.7M 0.059 0.271 0.988

Figure 4 show the qualitative examples from the OuKi
test set. The proposed approach clearly preserves the scene
structure and details compared to baseline methods.

Dense depth prediction using ARCore points. The re-
cent AR frameworks provide 3D points of the environment,
which can be utilised for dense depth estimation. To this
end, we collected video sequences using an Android phone
and used ARCore [2] to produce a sparse 3D point cloud
of the scene. Figure 6 presents a challenging sample from
OuKi dataset using the ARCore points. The results with
different number of input points confirm that 1) coarse de-
tails are well-preserved for all sparsity cases, and 2) depth
estimates are consistently better when using more points.

Dense depth prediction from two images. We provide
examples where we reconstructed a very sparse set of 3D
points (32 points) from two images and utilized those as
input to our model. The dense depth maps obtained with
this setting using our method, NLSPN [3] and MVSNet [6]
are illustrated in Figure 5. The proposed method produces
high quality depth maps with significantly less distortions
than baseline approaches.



4. Definitions of the evaluation metrics
For NYU-Depth-v2 [4] the evaluation results are calcu-

lated for pixels with depth values in the range [0.0, 10.0]
while for KITTI [5] the valid range is [0.0, 90.0]. We eval-
uate the performance for our model and for baselines using
the following standard metrics:

• Mean absolute relative error (REL):
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• Mean absolute error (MAE):
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• Mean absolute error of the inverse depth (iMAE):
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• Root mean square error of the inverse depth (iRMSE):√√√√ 1
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where N is the number of valid pixel; d̂i and di are the
predicted and ground truth depth value at pixel i; p̂i and
pi are the inverse value of the predicted and ground truth
depth at pixel i. Higher thresholded accuracies δ1, δ2 and δ3
figures mean better results, while lower REL, MAE, RMSE,
iMAE, iRMSE values are better.
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Figure 1. An example from the KITTI validation set using 1, 16, 32, 72, 285, 1150 randomly sampled points. (Ground truth, depth and
error maps are at the same scale for visualization)
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Figure 2. An example from the KITTI validation set using 1, 16, 32, 72, 285, 1150 randomly sampled points. (Ground truth, depth and
error maps are at the same scale for visualization)
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Figure 3. Examples from NYU-v2 with different number of input 3D points.
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Figure 4. OuKi examples are captured using a Kinect-v2 (a).
Dense depth maps and reconstructed point cloud: (b) ground truth,
(c) NLSPN [3], (d) MVSNet [6], and (e) the proposed method.
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Figure 5. OuKi examples are captured using an Android phone
(a). Dense depth maps and reconstructed point cloud from two
images: (b) NLSPN [3], (c) MVSNet [6], and (d) the proposed
method.
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Figure 6. An example from OuKi dataset with different sparsity. Input 3D points are enhanced for visualization.


