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A. Connection between pOSE models and ML
estimates

In this section we show that similar to the the ROSE case
the original OSE from [3] is related through linearization to
the ML estimate of the regular pinhole camera. Here we let
z;;j denote the 2-vector containing the first coordinates of a
3-vector representing a 3D point Z;;. The number A;; is the
third coordinate of Z;;. This point is assumed to be written
Z;; = P; X, where P;is a 3 x 4 camera matrix and X is
a 4-vector with last coordinate 1 representing a 3D-point in
the global coordinate system. The matrix Z containing the
vectors Z;; as blocks can then be factorized into
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With this notation the bundle adjustment criteria with a
regular pinhole projection can be written
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where m,; is a 2-vector containing the measured image
point.
The original OSE used in [3] is given by
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This term penalizes deviations from the viewing ray con-
taining the camera center and the measured point. However
in contrast to (A.2), which weights the error by the depth
%;j, the term A.3 only measures the perpendicular error to
the viewing ray. In addition the OSE term has a shrinking
bias as down scaling the matrix X always reduces to objec-
tive value. Hence a second term is needed to fix the scale of
the reconstruction. For this purpose [3] uses the affine term
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A convex combination of the OSE and affine terms yeilds
the pOSE objective
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It is clear that the above term in some sense favors solutions
with depth 1 due to the affine term. However by selecting 7
relatively small the idea is that the distance to the viewing
lines should dominate the error allowing for deviations from
)\ij =1.
A straight forward application of Taylor’s formula
around the point (2, \) yields
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which gives
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If (2,\) = (m, 1) we get
1
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which is the OSE residual. Hence a Gauss-Newton
approach attempting to minimize (A.2) starting from
(xij,2i;) = (my;,1) would in its first iteration attempt
to minimize the approximation (A.3). We remark however
that the starting point may not be feasible since the corre-
sponding matrix X may not be of low rank and hence the
factorization (A.1) infeasible. Still this observation opens
up the possibility to improve the pOSE approximation in
the sense that we can get closer to the bundle objective by
updating the linearization. We illustrate in Figure A.1 this
by performing two updates of the linearization, for n = 0.5.

B. More Visualizations and Datasets

B.1. Door, Fountain, Kirchenge, and Grossmunster
datasets

In this section we show more visualizations regarding
the experiments in Section 4.2, where the complete radial



Figure A.1: Resulting 3D reconstruction when no update
(left), 1 update (middle), and 2 updates (right) of the lin-
earization with pOSE are performed, for n = 0.5 and with-
out reducing 7 in each update. By performing two updates,
the reprojection error decreased from 3.57 to 1.48 pixels.

distortion invariant SfM pipeline is started with the solution
of RpOSE with 2 updates. In these experiments it was used
n = 0.01, and 7 is decreased by a factor of 100 in each
update. The 3D reconstructions are shown in Figure B.2.

B.2. TUM Dataset

Additionally, the proposed pipeline is evaluated using
the TUM Monocular Visual Odometry Dataset [2]. We se-
lect 3 of the sequences that have more texture in the initial
images. The 2D points are tracked along the first images.
Relevant key points are selected in each image frame and
tracked using optical flow correspondences [0] with back-
tracking for matching verification. The principal point and
center of distortion are assumed to be the center of the im-
age.

The benchmark provides ground-truth focal length and
camera poses. The estimated camera poses are compared
to the ground-truth after a similarity transformation.
To evaluate our results we define the metrics rela-
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time. In these experiments we used 77 = 0.01 and decreased
n by a factor of 100 in each update. We also compare
the performance of the pipeline initialized with RpOSE
with the cases where ALM and pOSE (n = 0.05) are
used instead. For the case of pOSE, no local optimiza-
tion is performed after the factorization method, and the
matrix completion step is replaced by an estimation of
the distortion parameters only. Note that, contrarily to the
experiments in Section 3.2 of the paper, in this experiment
there is a compensation for distortion is done for the
pOSE case (distortion parameters estimation + bundle
adjustment). The setup of the experiments is similar to the
experments in Section 4.1 of the paper. For fair comparison,
local optimization and bundle adjustment were run until

IThe position error is normalized by the length of the path along the
selected images.

convergence, and the displayed runtimes correspond to the
runtime of the factorization methods only. These methods
are implemented in MATLAB, thus the relatively slow
convergence times.

The results and 3D structure obtained are shown in
Table B.1 and Figure B.3, respectively, and show that a
pipeline initialized with our method outperforms instances
of the same pipeline initialized with similar factorization
methods in terms of error metrics and/or runtime.

C. Extension to Non-Rigid Structure from Mo-
tion

C.1. NRSfM factorization

The proposed framework can be extended to deal with
Non-Rigid Structure from Motion problems by parameter-
izing X in each frame ¢ as a linear combination of K shape
basis By, € R**F k =1,..., K, resulting in
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where ¢; ,k = 1, ..., K are the shape coefficients for the
i:th view, B € R3%*F is a matrix consisting of a vertical
concatenation of all By, and Pi(1:3) and Pi(4) are the first
three columns and the last column of P;, respectively. Ex-
panding to all views, we get
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Note that Z is now arank 3K +1, and K = 1 consists of the
rigid case considered in the main paper. The factorization

P {?} can then be used in

minimize HA (]5 {?]) -b
P,B

where A and b are defined in the main paper.
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C.2. Weighted Nuclear Norm Regularization

It is possible to weight differently the contribution of
each of the K shape basis in the reconstruction [5, 4] by
adding to (C.11) a regularization term on the singular val-
ues of Z, leading to the optimization problem

o 2
minimize Zwiai(Z)—FH.A(Z)—bH .
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Figure B.2: 3D reconstruction of the Door, Fountain, Kirchenge and Grossmunster datasets (top to bottom).



Table B.1: Evaluation metrics for the experiments with the TUM datasets. Each sequence has [Fc, Pp, W%], where F is the
number of viewpoints, P the number of tracked points and W the percentage of available data entries.

sequence_25 sequence_29 sequence_31
[30c,4822p,75.5%] [30c,5377p,60.3%] [15¢,7606p,88.0%]
RpOSE 1.235 0.265 1.065
Rotation [deg] ALM 3.099 129.987 13.932
pOSE 7.507 0.395 0.802
RpOSE 0.44 1.34 0.59
Position [%] ALM 0.49 26.07 5.87
pOSE 1.06 0.94 0.69
RpOSE 0.394 0.146 0.149
2D [pix] ALM 0.420 219.19 0.644
pOSE 0.394 0.146 0.149
RpOSE 6.00 5.63 13.41
Focal [%] ALM 12.34 98.66 7.37
pOSE 9.18 7.31 10.06
RpOSE 152 145 107.88
Runtime [s] ALM 1073 1050 2036
pOSE 420 798 1713

Figure B.3: (Left) Examples of images for the sequences of TUM dataset. (Right) 3D reconstructions using the pipeline
initialized with RpOSE for sequence 25, 29, and 31 (top to bottom) of the TUM dataset.



This regularization is commonly known as Weighted Nu-
clear Norm, and as shown by Iglesias et al. [4], it can be
applied to factorization formulations by solving instead the
equivalent problem
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where P@ and BT are the i:th column of P and BT,
respectively.

C.3. Estimation of correction matrix

Similarly to the rigid case, the solution P obtained from
(C.21) does not necessarily have the desired structure shown
in (C.10). Dai et al. [ 1] propose an algorithm to estimate a
correction matrix (G, such that for each view ¢

PGy  feciyRi. (C.14)

From the orthogonality property of R;, we get
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from which is possible to obtain a linear system such that

Avec(Q) =0 (C.16)
The solution @ is then obtained from the 2K? — K
nullspace of A in (C.16) and must verify the intersection
{Avec(Q)=0 N Q=0 N rank(Q) =3}, (C.17)
which is solved with SDP. After estimating (), G}, can be
obtained through Cholesky decomposition of @), and the
rotations R; from (C.14). For further details we refer the
reader to [1].

C.4. Structure estimation from known camera ro-
tations

Dai et al. [1] also propose a method for structure es-
timation from known rotation matrices obtained from the
method described in Section C.3. In this case, the 3D struc-
ture and the camera translations are the unknowns, and the
parameterization becomes

Z = Rg(X*) + 17, (C.18)
where R = blkdiag(R,...,Rr) € R2"3F t ¢ R?F is
a vector corresponding to the translations (or P4), X =
g(X*), X* € RF*3P is a reshaped version of X such that

X'=[X, X, X.], (C.19)

)

and X,, X,, X, € R®" are the x, y, and z-coordinates
of the 3D structure over the F' views. Using this reshaped
matrix, we can factorize X? = C'B¥, with

C1,1 C1,K 971(31)
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Note that since the rank of X* is K, the matrices C' and
B* will have K columns and rows, respectively. This is a
significant dimensionality reduction when compared to the
3K columns/rows of the factors in Section C.1, and thus
leads to a smaller (and more constrained) problem.

The regularization mentioned in Section C.2 can also be
applied directly on the singular values of X*, resulting in
the following optimization problem

uT(l) H2
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We refer the reader to Iglesias ef al. [4] for further details

on how to optimize (C.21).

C.5. Proposed extension to NRSfM

We use a similar pipeline to the one proposed by Dai et
al. [1] to extend our method to NRSfM. The pipeline con-
sists of the following steps:

1. Obtain a factorization {P, B} using the formulation
described in Sections C.1 and C.2;

2. Estimate the camera rotations using the method de-
scribed in Section C.3;

3. Estimate the 3D structure and translation by solv-
ing the matrix factorization problem described in Sec-
tion C.4.

We qualitatively evaluate our method using the Back [7],
Heart [8], Paper [9], with K = 2, 3 and 2, respectively, and
n = 0.05. The weights w; chosen for each dataset are

e Back: w; = 1073 [1 11 2 2 2] for C.1/C.2;
w; = 1073 [1 2] for C.4;

e Heart: w; = 107*[1 1

122 2 3 3 3
for C.1/C.2;w; = 1073 [1 2

3] for C.4;

e Paper: w; =107%[1 1 1 2 2 2]forC.1/C.2;
w; =1x107*[1 2] for C.4.

The results, shown in Figures C.4, C.5, and C.6, as well
as in the three videos and .fig files submitted along with this
document, show that our method can easily be extended to
NRSfM problems with promising results. Note that these
consist of preliminary results.
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Figure C.5: Heart dataset.
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Figure C.6: Paper dataset.
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