Global Pooling, More than Meets the Eye:
Position Information is Encoded Channel-Wise in CNNs
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S1. Decoding Absolute Location From Pre-
trained Models

We have shown in Sec. 3 that Global Average Pooling
(GAP) layers can admit absolute position information by
means of the ordering of the channel dimensions. Now
we explore how much absolute position information can
be decoded from various pre-trained models which are not
explicitly trained for location classification. We first explore
an ImageNet [4] pretrained ResNet-18 model [7], fene. As
input, we use the same images as described in Sec. 3 of the
main manuscript: we place a CIFAR-10 [8] image on a black
canvas in a location (note there is no overlapping with other
locations), where each location has a unique index (see Fig.
1 in the main manuscript for a visual example). We feed
this grid-based input image, I, to fe,. and obtain the latent
representation, z. Next, we apply a 1 x 1 convolution on z
to produce a representation, z’, which has the same number
of channel dimensions as the number of classification logits.
Then we apply the GAP operation which collapses the spatial
dimension, resulting in the final classification logits, §. Note
that we freeze the classification network as we are interested
in validating how much absolute location can be decoded
from the latent representation of pre-trained model for image
classification. We can formalize the operations as follows:

2= fenc(I), 2’ =Convixi(z), §=GAP(z'). (S1)

We also decode absolute position information from the
latent representation of a ResNet-18 model trained for the
task of semantic segmentation on the PASCAL VOC 2012
dataset [5]. The same method is applied as above, using
a simple 1 X 1 convolution on the latent representation z,
followed by a GAP layer to output the number of location
classes.
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Figure S1. Decoding absolute location from ImageNet [4] pre-
trained classification and PASCAL VOC 2012 [5] pretrained seg-
mentation models (ResNet-18 [7] backbone) using GAPNet and
ShuffleNet. Note that we freeze the classification and segmentation
pretrained models and only train the GAP or linear layer which pre-
dicts the output logits. It is clear that GAPNet can decode positional
information from a model trained for classification or semantic seg-
mentation, while ShuffleNet fails to correctly decode locations. This
demonstrates that positions are encoded channel-wise in the latent
representation.

We provide the location classification results from image
classification and semantic segmentation pretrained models
in Fig. S1. These results are consistent with the results
in Sec. 3 of the main manuscript and further demonstrate
unequivocally that rich positional information is contained
in the channels of CNNs. Furthermore, as shown by the
degradation of performance when a shuffling operation is
applied (ShuffleNet), that this information is based on the
ordering of the channels.
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Figure S2. Comparison of shifting consistency with increasing pixel
shift sizes across different methods trained on ImageNet [4] .

S2. Shift Invariance Results

In Table 2 of the main manuscript we presented shift con-
sistency results for various networks. We show additional
shift-consistency results in Figure S2. We compare three net-
works, a standard ResNet-50 [7], a ResNet-50 with BlurPool-
k2 [12], and our AugShift method. Note that we train each
model on ImageNet and use the validation set to validate the
consistency for pixel shifts = {8, 16, 32,40, 48,64}. Our
method consistently outperforms the ResNet-50 baseline
and reveals a useful adjunct strategy when compared with
BlurPool.

S3. Targeting Region-Specific Channels

In Sec. 4.2.2 of the main manuscript, we have shown
it is possible for specific channels in the latent representa-
tion of a CNN to encode specific regions contained in an
image, and furthermore, that suppressing these activations
can harm the performance in specific regions in the image.
We now show an overall comparison of the difference in per-
formance, in terms of mean intersection over union (mloU),
between the left and right halves of the image, when either
the left-encoding or right-encoding channels are suppressed.
Figure S3 shows the change in mIoU when evaluated for
the left and right halves of the Cityscapes [3] validation im-
age when the right-encoding channels are turned off. As
expected, we see a moderate but consistent decrease in per-
formance on the right half of the image. Figure S4 shows the
same results but when targeting the left-encoding channels.
Similar to the right-encoding channels, we see a moderate
but consistent decrease in performance on the left half of the
image.
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Figure S3. Relative performance drop in terms of mloU when the
top N right-specific neurons are removed from the left and right
regions. Note that we evaluate on either the left half or right half of
the image for DeepLabv3-ResNet-50’s [2] trained on Cityscapes [3]
when the top N region-specific channels are removed from the
latent representation during inference.
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Figure S4. Relative performance drop when the top N left-specific
neurons are removed from the left and right regions. Note that
we evaluate on either the left half or right half of the image for
DeepLabv3-ResNet-50’s [2] trained on Cityscapes [3] when the
top N region-specific channels are removed from the latent repre-
sentation during inference.

S4. Targeting Pedestrian Detection Networks

We are interested in whether position-specific neurons are
important for object-centric position-dependant tasks. Our
hypothesis is that removing position-specific neurons may
harm detection performance more than removing random
neurons as position is an important factor in the success-
ful detection of objects in a scene. To this end, we now
target the overall position-specific channels of a pedestrian



Methods Reasonable | Small | Heavy| All}

Faster-RCNN [10] 10.3 11.59  33.07 30.34
+ Random 10.33 11.87 33.78 31.92
+ Targeted 12.51 12.77 3695 34.36
Cascade-RCNN [1] 7.55 8.55 2747 26.89
+ Random 7.85 8.39 2831 27.17
+ Targeted 8.44 9.3 30.59 28.57
CSP [9] 11.05 1476 4135 37.57
+ Random 11.05 15.0 41.3  38.05
+ Targeted 11.14 16.7  41.24 38.82

Table S1. Targeting pedestrian detection models with position-
specific neurons. We remove the top 100 neurons from the latent
presentation of the detection models. Targeting the position-specific
channels has more influence on the overall pedestrian detection
performance compared to the random targeting. Note that lower is
better for the reported metrics.

detection model trained on the CityPerson [3] dataset. The
CityPerson dataset is based on Cityscapes [3] but only uses
the bounding box annotations of the person category and
is used for the task of pedestrian detection. We choose the
following three recent pedestrian detection models trained
on CityPerson (available in [6]): (i) Faster-RCNN [10] (ii)
Cascade-RCNN [1] with the HRNet [ | 1] backbone, and (iii)
CSP-ResNet-50 [9]. Similar to the experiment in Sec. 4.2.2,
we identify the top N overall position-encoding channels
(using Eq. 2) and remove these dimensions before passing
the latent representation to the detection head.

Table S1 presents the pedestrian detection results when
the top 100 position-specific neurons are removed from a
pedestrian detection model trained on CityPerson (we choose
N = 100 as the latent dimension of the networks used
are relatively small (e.g., 256 for HRNet [11])). Note that
we follow the standard benchmark metric, mean average-
precision (mAP), to report the detection results under four
different settings. The results are consistent with the seman-
tic segmentation results (Sec. 4.2.2): removing the top 100
position-encoding channels degrades the performance more
than choosing 100 random neurons. For example, for the
Faster-RCNN network, targeting the position encoding neu-
rons decreases the performance by 4.02%, while targeting
random neurons admits a 1.58% drop.
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