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1. Overview
In this supplementary material, we present additional

experimental results and analysis.

• We report the results on two additional unsupervised
person re-ID benchmarks.

• We report the results of different network backbones on
multiple benchmarks.

• We present detailed ablation study on the effect of dif-
ferent training losses.

• We discuss the relationships between our cluster-wise
contrastive learning (CCL) algorithm and other unsu-
pervised feature learning methods.

• We show more curves of our progressive domain adap-
tation (PDA) strategy in terms of clustering and re-ID
performance.

2. Additional Benchmarks
We conduct experimental evaluations on two additional

unsupervised person re-ID benchmarks to supplement this
paper, i.e., MSMT-to-Duke and MSMT-to-Market. Table
1 presents the results of our approach and previous state-
of-the-art methods. For fair comparisons, we re-implement
MMT [5] using the same DBSCAN clustering algorithm and
train the same 80 epochs with our method. Equipped with the
same ResNet-50 backbone, our approach outperforms prior
state-of-the-art methods by a large margin, e.g., surpassing
MMT [5] and SpCL [6] by 7.9% and 5.6% on MSMT-to-
Market, respectively.
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3. Different Network Backbones
We report results with IBN-ResNet-50 as backbone on

multiple benchmarks. The IBN-ResNet-50 is an improved
network by instance normalization and batch normaliza-
tion modules. Table 4 shows that using the stronger IBN-
ResNet-50 backbone can achieve better results than ResNet-
50. Compared to previous state-of-the-art methods with
the same IBN-ResNet-50, our method achieves consistent
performance improvement on all the eight benchmarks, e,g.
+8.1% mAP over MMT and +6.3% mAP over SpCL on
MSMT-to-Market.

4. More Ablation Study
Table 2 compares the results with different training losses.

The experiment of (v) means the baseline method with the
common cross entropy and triplet losses. Combined with our
CCL loss, we can improve the baseline by 5.9% and 7.5%
mAP on Market-to-Duke and Duke-to-Market, respectively.

5. Different Unsupervised Methods
Compared to instance-wise unsupervised methods.

Recently, the self-supervised contrastive learning framework
has been explored in these unsupervised feature learning
methods [9, 7, 4]. They typically rely on instance-wise
pairs to maximize agreement between differently augmented
views of the same image. Our method adopts the similar
N-pair loss formulation with these contrastive learning based
methods. However, we cluster different images with sim-
ilar semantics into a group. We hypothesize that directly
applying instance-wise pairs may hinder the learning of dis-
criminative features for distinguishing semantic classes due
to the different optimization targets. We add the improved
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MoCoV2 baseline [4] in Table 3 and find it also fails on our
unsupervised re-ID task, which validates our intuition.

Compared to cluster-based unsupervised methods.
We discuss the relationships between our CCL algorithm
with other cluster-based unsupervised feature learning meth-
ods [1, 3, 2]. First, SwAV [3] clusters the differently aug-
mented views of the same image to obtain prototypes vectors
and constructs a swapped prediction problem without con-
trastive learning. Differently, we cluster different images
to multiple pseudo classes and use a momentum network
for contrastive learning iteratively. Second, Both DeepClus-
ter [2] and SeLa [1] alternate between feature learning and
clustering (self-labeling). In the feature learning step, they
only use the common cross entropy loss but we integrate the
proposed CCL. Besides, they handle the degenerate solution
of clustering by heuristics such as sampling training data
based on a uniform distribution over the pseudo classes [2],
or maximizing the information between data indices and
labels [1]. The degenerate solutions of clustering need be
considered in their unsupervised feature learning setting
where the network is trained from scratch. However, we
focus on a unsupervised domain adaptation problem where
the network can be trained with the supervised source data.
With this meaningful initialization, we do not need particular
design on the clustering algorithm during the CCL process.

6. Effect of Progressive Training
Figure 1 compares our progressive domain adaptation

strategy and the two-stage training baseline on multiple
benchmarks. According to the clustering performance, the
results imply that our method can gradually reduce label
noise and yield cleaner clusters than baseline. According to
the re-ID performance, the results imply that our method can
learn better features gradually and achieve higher recognition
performance.

Table 1. Performance comparisons on two additional benchmarks
for unsupervised person re-ID. † means our re-implementation of
[5] with the DBSCAN clustering algorithm for fair comparisons.
The results of "Ours*" are obtained by combining the proposed
method with soft cross-entropy loss, soft triplet loss and mutual
learning strategy introduced by [5]

Methods
MSMT-to-Duke MSMT-to-Market
mAP rank-1 mAP rank-1

MMT † [5] 60.6 75.0 75.2 90.4
SpCL [6] - - 77.5 89.7
Ours 67.5 80.6 83.1 94.1
Ours* 68.4 81.2 84.1 94.5

Table 2. Ablation studies of training losses. (v) means the “Baseline”
and (viii) means the “Baseline+CCL” methods in the paper.

Methods Lce Ltri Lccl
Markt-to-Duke Duke-to-Market
mAP rank-1 mAP rank-1

(i) 31.1 48.8 33.7 62.3
(ii) 3 50.6 67.8 61.7 83.5
(iii) 3 23.9 47.0 27.3 45.4
(iv) 3 56.8 71.9 67.5 84.2
(v) 3 3 53.7 69.9 63.6 82.5
(vi) 3 3 58.8 74.1 70.4 86.5
(vii) 3 3 57.9 72.6 68.7 85.1

(viii) 3 3 3 59.6 75.0 71.1 87.8

Table 3. Performance comparisons with other contrastive learning
methods and our method. "†" means our implementation based on
the official code. The cross-entropy and triplet losses are not used
for all the experiments here.

Method Market-to-Duke Duke-to-Market

mAP rank-1 mAP rank-1

SupCon† [8] 66.0 79 .4 75.4 88.1

InstDisc† [9] 1.9 4.1 2.4 5.9
MoCo† [7] 10.3 17.7 11.1 26.2
MoCoV2† [4] 9.5 17.4 10.8 25.2

CCL (Ours) 56.8 71.9 67.5 84.2



Table 4. Performance comparisons with different network backbones. We re-implementation [5] with the DBSCAN clustering algorithm for
fair comparisons.

Backbone Methods Market-to-Duke Duke-to-Market Market-to-MSMT Duke-to-MSMT

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

ResNet-50 MMT [5] 62.7 76.8 73.5 89.7 24.4 50.7 25.2 53.2
Ours 70.8 83.5 83.4 94.2 35.8 65.8 36.3 66.6

IBN-ResNet-50 MMT [5] 65.2 79.6 76.9 92.0 30.4 56.0 30.6 60.1
Ours 72.9 85.8 86.3 95.8 40.1 70.4 40.1 70.7

Backbone Methods MSMT-to-Duke MSMT-to-Market PersonX-to-Market PersonX-to-MSMT

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

ResNet-50
MMT [5] 60.6 75.0 75.2 90.4 70.7 86.2 18.2 39.5
SpCL [6] - - 77.5 89.7 73.8 88.0 22.7 47.7

Ours 68.4 81.2 84.1 94.5 79.6 92.5 28.9 53.2

IBN-ResNet-50
MMT [5] 63.3 78.1 78.1 91.9 73.8 90.1 21.5 44.8
SpCL [6] - - 79.9 92.0 77.9 90.5 25.4 50.6

Ours 70.9 83.2 86.2 96.3 81.5 94.2 31.3 55.8

(c) Market-to-Duke(a) Duke-to-Market (b) Duke-to-MSMT (d) Market-to-MSMT

Figure 1. Illustration of the proposed progressive domain adaptation (PDA) in term of the re-ID and clustering performance. The first line
shows the re-ID performance (mAP and rank-1 accuracy) on the test set. The second line shows the clustering performance (NMI and
F-measure) on the training set. "B", "C" and "P" represent the baseline, the proposed CCL, and PDA methods, respectively. Both "B+C" and
"B+C+P" methods use the same ResNet-50 backbone, the same DBSCAN clustering algorithm and the same 80 training epochs in total.
Without PDA, we train the baseline model by 50 epochs on source and then fine-tune it on target until 80 epochs.
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