
A Proofs for continuous contraction algorithms
We will first prove theorem 2 for s-t-mincuts. Afterwards, we will give those
parts of the proof for the normalized cut version that differ from the version for
s-t-mincuts.

Proof of theorem 2 for s-t-mincuts. Fix a value of n and a continuous contrac-
tion algorithm, we will then construct a graph on which this algorithm finds an
s-t-mincut with probability ≤ 2−n+3.

Consider the graph G in fig. 1 in the main paper, but with weight 1 for all
edges and generalized to n vertices (two of which are s and t). We call the
adjacency matrix of this graph A. Every s-t-cut of G is minimal, and there are
2n−2 such s-t-cuts. So there must be at least one s-t-mincut, whose cut set we
shall call C, that the contraction algorithm selects with probability ≤ 2−n+2.

The idea of this proof is to slightly decrease the weights of all the edges in
C. Because of continuity, we can do this in such a way that the probability of
selecting C does not change by much. Then the cut defined by C will be the
unique s-t-mincut in the modified graph but will still be selected with probability
of order 2−n. What follows is a more rigorous version of this argument.

We will write pC(Ã) for the probability that the algorithm selects the cut C
on the graph with n vertices and weighted adjacency matrix Ã. We know that
pC(A) ≤ 2−n+2. Our goal is to find an adjacency matrix A′ for which C is the
unique s-t-mincut and pC(A′) ≤ 2−n+3.

First, we need to show that for a continuous contraction algorithm, pC(Ã) is
a continuous function of Ã. The definition of continuous contraction algorithms
only states that the scores at each step need to be continuous function of the
adjacency matrix. It’s unsurprising that this also leads to continuous overall
probabilities of selecting given cuts. The details do not provide much insight
and are shown separately as lemma 1.

This continuity of pC(Ã) means that for ε := 2−n+2, there is a δ > 0 such
that if ‖A−A′‖∞ ≤ δ for some A′, then |pC(A)− pC(A′)| ≤ ε.

So we define the graph G′ with adjacency matrix A′ by setting the weights
of the edges in the cut set C to 1− δ and leaving the other weights at 11. Then
‖A−A′‖∞ = δ, so

|pC(A)− pC(A′)| ≤ ε = 2−n+2

This means that the probability of finding the cut C in the new graph G′ is

pC(A
′) ≤ pC(A) + ε ≤ 2−n+2 + 2−n+2 = 2−n+3

At the same time, C is the unique s-t-mincut of G′. Every s-t-cut has a cut
set with the same cardinality and C is the only one which contains only edges
that have weight 1 − δ — every other cut set contains some edges with weight
1.

This means that on G′, the contraction algorithm has only an exponentially
low probability of finding any s-t-mincut, as claimed.

1We can of course assume δ < 1 without loss of generality

1



Proof of theorem 2 for normalized cuts. Instead of the graph from fig. 1 in the
main paper that we used in the previous proof, let G be a complete unweighted
graph on n vertices. We will show that in this graph, every cut is a normalized
cut.

In a complete unweighted graph, we always have

w(A,B) =
∑

a∈A,b∈B

wab = |A| · |B| − |A ∩B|

(the last term is necessary because there are no self-loops). Therefore, with
k := |A|, we get

w(A,Ac) = k(n− k)
w(A, V ) = k(n− 1)

w(Ac, V ) = (n− k)(n− 1)

So the normalized cut cost of the cut (A,Ac) is

ncut(A,Ac) =
w(A,Ac)

w(A, V )
+
w(A,Ac)

w(Ac, V )
=
k(n− k)
k(n− 1)

+
k(n− k)

(n− k)(n− 1)

=
(n− k) + k

n− 1
=

n

n− 1

for each of the 2n−1 possible cuts. This means that there are 2n−1 normalized
cuts, and the algorithm must assign probability ≤ 2−n+1 to at least one of them.

From here on the proof procedes like that for s-t-mincuts: if the weights are
slightly perturbed, there will be a unique normalized cut, but its probability
will still be close to 2−n+1. We therefore don’t repeat the details.

To make working with weighted adjacency matrices easier, we consider every
graph to be fully connected for the following Lemma. Non-existent edges are
instead treated as edges with weight zero.

Lemma 1. Let C be a fixed set of edges of the complete graph on n vertices. Let
pC(A) be the probability that a given continuous contraction algorithm does not
contract any edges from C when run on the graph with n vertices and weighted
adjacency matrix A. Then pC is a continuous function.

Note that we don’t require C to be a cut set and that here, pC(A) does not
always denote the probability that C is the chosen cut. This makes the proof
more concise and is a strict generalization: if C happens to be a cut set for
some adjacency matrix A, then pC(A) will be the probability that C is the final
chosen cut.

Proof. Let e1, . . . , en−2 be an arbitrary but fixed set of edges. We will show that
the probability p(e1, . . . , en−2) that the algorithm contracts e1, . . . , en−2 in that
order is a continuous function of A. Then the claim follows because pC(A) is
simply the sum of these probabilities over all (n− 2)-tuples of edges that don’t
contain edges from C.

We prove the claim in two steps:

2



1. Let Ck(A) for k ∈ {1, . . . , n− 2} be the adjacency matrix that is reached
from starting with A and contracting e1, . . . , ek. We will show that Ck(A)
is a continuous function for all k.

2. We then show that p(e1, . . . , en−2) is a continuous function of the partially
contracted adjacency matrices C1(A), . . . , Cn−2(A)

It will then follow that p(e1, . . . , en−2) and thus pC is a continuous function of
A, as a composition of continuous functions.

For the first step, note that contracting an edge sets an entry in the adjacency
matrix to zero and adds its previous value to another entry. This means that
each entry of C1(A) is either zero (for all A) or a certain sum of entries of
A. The structure of the sum is determined by e1 and does not depend on A.
Therefore, C1 is a continuous function of A. Each entry in C2(A) is zero or a
sum of entries in C1(A) and therefore a continuous function of C1(A), which
makes it a continuous function of A by composition. By induction it follows
that all Ck are continuous functions of A.

For the second step, we write p(e1, . . . , en−2) as

p(e1, . . . , en−2) =

n−2∏
k=1

W(ek;Ck(A))∑
eW(e;Ck(A))

(1)

the sum over e is over all the edges at that step; which summands appear
depends only on e1, . . . , en−2 and not on A. The scores W that appear are by
definition continuous in their second argument Ck(A). Since Ck(A) is continuous
in A and the entire expression is clearly continuous in the scores, p(e1, . . . , en−2)
is continuous in A as claimed.

B Proofs for local contraction algorithms
We will first prove theorem 3 for s-t-mincuts. The approximability result from
corollary 4 and the result for normalized cuts will then follow easily.

Proof of theorem 3 for s-t-mincuts. The graphs Gn we will use consist of n
copies of each of three different subgraphs, shown in fig. 1. As an example,
a schematic version of G2 is shown in fig. 2. Each of the colored boxes contains
one subgraph, each of the three types occurs twice. The different box colors de-
note the three different types. The last two types only differ in their orientation
but we will treat them separately. The general graph Gn simply has n instead
of two copies of each subgraph.

We call each such subgraph, including the blue edges that connect it to s
and t, a band. There are 3n bands, n of each type. We say that a band has
been touched if one of the edges belonging to it has been contracted. Clearly,
every band has to be touched at some point during the contraction process.

One of the key ideas of the proof is that Gn contains many edges that have
isomorphic neighborhoods, but some of which are part of the s-t-mincut while

3



s t

(a) Band of type A

s t

(b) Band of type B

s t

(c) Band of type C

Figure 1: The three different “bands” used in Gn

4



s

t

Figure 2: The unweighted graph G2. The idea is still the same as for the simpler
example from fig. 1 in the main paper. But the short parallel paths between s
and t have now been replaced by “bands”, our name for the subgraphs in colored
boxes. This construction ensures that it is impossible to find “safe” edges for
contraction based only on local properties. The bands are only hinted at here,
the full bands are shown in fig. 1. Blue corresponds to type A, red to B, yellow
to C.

5



(a) Red neighborhood

s/t

(b) Blue neighborhood

Figure 3: The different neighborhoods that occur in Gn. s-blue and t-blue are
both shown in fig. 3b because they differ only in whether they contain the node
s or t.

others are not. A local contraction algorithm assigns the same score to each of
these edges with isomorphic neighborhoods. This will give us a lower bound on
the contraction probability of edges included in the s-t-mincut cut set in any
particular step.

All of the edges in Gn belong to one of three isomorphism classes of neigh-
borhoods, which we call red, s-blue and t-blue. These neighborhoods are shown
in fig. 3.

The blue neighborhood classes depend on the degree of s (t) which is a
function of n. We will call an edge s-blue (t-blue) if its neighborhood fits the
schema from fig. 3b, no matter the degree of s (t). In a fixed graph, all s-blue
(t-blue) edges have isomorphic neighborhoods. That the same is not true across
graphs does not matter for our purposes.

All the edges are colored according to their neighborhood (blue and red) in
fig. 1. During the contraction process, other neighborhoods may of course arise.

The unique s-t-mincut of Gn cuts the red edge in the middle of each band of
type A and the blue edges on the side where there is only one of them in bands
of type B and C. The contraction algorithm will find this minimum cut iff it
does not contract any of these edges. So we will say a contraction is “wrong” or
a “mistake” if it contracts one of these edges belonging to the s-t-mincut.

We will now prove some useful statements:

1. In an untouched band, all edges are either red, s-blue or t-blue, with each
edge belonging to the same type as in the original graph Gn.

Proof. It’s clear that contractions of red edges in one band don’t influence
other bands. If a blue edge is contracted, this can change the degree of s
or t but has no influence on other bands apart from that. �

2. If at most n
2 bands have been touched, then the probability that contract-

ing a blue or red edge is wrong is p(wrong|red or blue) ≥ 1
118 .

6



Proof. There are still at least n
2 untouched bands of all three types. Each

type contains a red edge, an s-blue edge or a t-blue edge that mustn’t be
contracted respectively (as per the statement proven just above). So there
are at least n

2 wrong red edges, n
2 wrong s-blue edges and n

2 wrong t-blue
edges.
Because all red edges have the same neighborhood, the local contraction
algorithm assigns the same score to all red edges. The same is true for
s-blue edges and for t-blue edges. So we have

p(wrong|red) = #wrong red edges
#red edges

≥ #wrong red edges
#total edges

≥ n/2

59n
=

1

118

and similarly p(wrong|s-blue) ≥ 1
118 and the same for t. This means that

p(wrong|red or blue) is bounded by

p(wrong|r or b) = p(wrong|r)p(r) + p(wrong|s-b)p(s-b) + p(wrong|t-b)p(t-b)
p(r) + p(s-b) + p(t-b)

≥
1

118 · p(r) +
1

118 · p(s-b) +
1

118 · p(t-b)
p(r) + p(s-b) + p(t-b)

=
1

118

p(r), p(s-b) and p(t-b) are what can be influenced by the choice of the
scoring function W but these terms cancel as we can see. �

We will now prove inductively that contracting an edge in k different bands
without contracting any wrong edges happens with probability ≤

(
117
118

)k for
k ≤ n

2 :

pk := p (no mistakes | k bands touched) ≤
(
117

118

)k

Proof. k = 0 Nothing to show.

k → k + 1 The probability of not making any mistakes until k + 1 bands have
been touched is the probability pk of correctly touching the first k bands
times the probability of not making a mistake while touching the final
band.
From statement 1 proven above, we know that to touch a new band, a
red, s-blue or t-blue edge will have to be contracted at some point. From
statement 2 we know that the probability of making a mistake on that
single contraction is at least 1

118 . Additional contractions may be made,
but they cannot decrease the total probability of making any mistake. So

pk+1 ≤
(
117

118

)k

· 117
118

=

(
117

118

)k+1

which proves the claim for k + 1.
�

7



Since all bands have to be touched eventually, we can apply this statement
with k = n

2 . So the success probability is at most
(
117
118

)n/2 which is exponentially
low in the number of vertices, 36n+ 2, as claimed.

Proof of corollary 4. Since the s-t-mincut has cost 3n, an α-minimal cut may
be worse than the mincut by at most 3n(α − 1). Every wrong contraction in
an untouched band increases the cost of the best cut that is still possible by
at least 1 (because there is only one unique way to optimally cut each band).
So to find an α-minimal s-t-cut, at most 3n(α− 1) wrong contractions may be
made in untouched bands.

As there are 3n bands, at least 3n− 3n(α− 1) = (6− 3α)n contractions in
different bands must be made without mistakes.

We showed in the proof of theorem 3 that making contractions in k different
bands without mistakes (with k ≤ n

2 ) happens with probability ≤
(
117
118

)k. If
α < 2, then 6 − 3α > 0, and therefore we can apply this result2 with k =
(6 − 3α)n and see that the probability of correctly contracting edges in the
required number of bands is exponentially low in n.

Therefore, the probability that mistakes are made in only 3n(α − 1) bands
is exponentially low, and thus also the probability of finding an α-minimal s-t-
cut.

Proof of theorem 3 for normalized cuts. It suffices to show that the s-t-mincut
in Gn is also the normalized cut for large n. The s-t-mincut cuts 3n edges.
Because the partitions are perfectly balanced in terms of internal edge weights,
only cuts that cut fewer edges than that can have a lower normalized cut cost.
In particular, any such cut could not separate s and t. One of its partitions
could therefore be no larger than one of the bands between s and t. But the
normalized cut cost of such a cut approaches 1 for large n, whereas the ncut
cost of the s-t-mincut is always 2 · 3n

2·28n+3n = 6n
59n = 6

59
3. So the s-t-mincut is

indeed also the normalized cut for large n.

C Implementation of the seeded contraction al-
gorithm

For unweighted graphs, Karger’s algorithm can be implemented in O(m) time as
follows [1]: First, a random permutation of all m edges is generated which takes
O(m) time. Afterwards, edges are contracted in the chosen order until only two
vertices remain. If an edge has already been removed by previous contractions,
it is skipped. [1] also describes how this method can be generalized to weighted
graphs. The only change is in how to generate the permutation of edges to give
different probabilities to different permutations.

To keep track of when to stop and of the current segmentation at each step,
we use a union-find data structure. Keeping this structure up to date increases

2If (6− 3α)n > n
2
, we just use k = n

2
3Each partition has 28n internal edges and there are 3n edges in the cut between partitions

8



the runtime to α(n)O(m) [2] where n is the number of vertices and α(n) the
inverse Ackermann function. But since α(n) < 5 for all practical values of n,
this theoretical increase has no practical relevance.

Two modifications are necessary to adapt this implementation to the seeded
contraction algorithm: first, we initialize the union-find data structure such that
nodes with the same seed are in the same cluster from the beginning. This is
possible with a linear scan over all nodes in O(n).

Second, we keep a boolean vertex property updated that denotes whether
a node is already labeled (i.e. in the cluster of a seed node) or not. Whenever
we come to an edge connecting two nodes that are already labelled, we skip it
instead of merging these nodes. This ensures that no seeds with different labels
end up in the same cluster and each node has a well-defined label at the end.
These extensions do not increase the runtime of processing one edge beyond
O(1), so the total runtime of the algorithm stays O(mα(n)).

D Details on experiments

D.1 Metrics
We used three common metrics to evaluate performance in the Grabcut ex-
periment: the adjusted Rand index (ARI), variation of information (VoI) and
accuracy.

The (unadjusted) Rand index is defined as the accuracy on the space of pairs
of samples, in the following sense: count the number TP of pairs of samples that
are correctly put in the same cluster (true positives) and the number TN of pairs
of samples that are correctly put in different clusters (true negatives). Then the
Rand index is TP+TN

(n2)
for n samples, where

(
n
2

)
is the total number of pairs of

samples.
The adjusted Rand index renormalizes the Rand index such that it is 1 for

a perfect clustering and has expected value 0 for a random clustering, indepen-
dently of the number of clusters. This is done by correcting for chance with

ARI =
RI − E[RI]
1− E[RI]

where RI is the Rand index and the expectation is over permutations of the
assigned labels. The expected value of 0 makes the ARI easy to interpret com-
pared to the unadjusted Rand index, for which even random clusterings can
have a positive expected value.

The variation of information between two variables X and Y can be defined
as

VI(X;Y ) := H(X|Y ) +H(Y |X)

where H(X|Y ) is the conditional Shannon entropy. To get a clustering metric,
we let X and Y be the different labelings (in our case ground truth and the
labeling to be evaluated). The joint distribution over X and Y is defined by
picking samples uniformly at random.

9



D.2 Parameters
In both experiments, we optimized the β parameter by hand to maximize the
performance according to the metrics we used separately for each method. In
the Grabcut experiment multiple metrics were used, but they all reached their
maximum at the same β value of those we tested.

In both experiments, we first found a reasonable range of β values and then
tested ten different values within these ranges. For the Grabcut experiment,
this range was β = 5 to β = 100, for the USPS experiment it was β = 1 to
β = 20.

D.3 Empirical runtimes
For a complete run on both datasets (Grabcut and USPS), the new Karger-based
algorithm takes about 20 minutes4, the random walker takes about 5 minutes
and watershed 9 minutes. All of these are wall clock times when running on
6 CPU cores. The random walker implementation is the one used in SciPy,
the other algorithms were implemented by us in Julia. Their runtimes could
probably be decreased with a more efficient implementation.

References
[1] David R. Karger and Clifford Stein. A new approach to the minimum cut problem.

J. ACM, 43(4):601–640, July 1996.
[2] Robert E. Tarjan and Jan van Leeuwen. Worst-case Analysis of Set Union Algo-

rithms. Journal of the ACM, 31(2):245–281, Mar. 1984.

4with 100 runs, enough for a reasonably good approximation of the true potential

10


