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1. Network Architectures

The stage-1 uses PSPnet [13] to obtain the semantic label
maps of the input images. The generators used in stage-2
(semantic extrapolation), stage-3 (panoptic label map gen-
eration) and stage-4 (RGB image generation) are inspired
from SPADE [7] generator and consist of 9 spade resid-
ual blocks. The multiscale discriminators used in stage-2
and stage-4 are similar to that in pix2pixHD [11]. The en-
coder of stage-4 (that forms VAE [4] with the generator)
is inspired from the encoder used in SPADE [7]. The co-
occurrence patch discriminator of stage-4 is inspired from
the one used in Swapping AutoEncoders [8]. Our stage-3
which converts the semantic label map into panoptic label
maps 1 is a pure-generator network and is inspired by [1].

2. Panoptic Map generation (stage-3)

The stage-2 of our pipeline extrapolates the semantic la-
bel maps. However, in order to differentiate between mul-
tiple instances of the same class, we need to generate the
panoptic label map from the thus extrapolated semantic la-
bel maps. In a typical panoptic label segmentation set-up,
we have access to the full image. However, in our case we
do not have access to the full image, but we have access to
only the extrapolated semantic label map which is obtained
as output of stage-2. To obtain the panoptic label maps from
outputs of stage-2, we take inspiration from [1]. Panoptic-
DeepLab proposes a method to convert the image into two
parallel branches 1. semantic label maps and 2. pixel-wise
instance center maps and x and y off-set maps from the in-
stance centers. The center maps and the off-set maps thus
predicted are used in conjunction with the semantic label
maps to obtain the final panoptic label map. For the panop-
tic segmentation branch, [1] obtain class-agnostic instance
centers and off-sets from the instance centers for every lo-
cation. Class-agnostic centers refer to center locations for
the different instances that belong to the ‘things’ categories.

1We use the term ‘panoptic label map’ and ‘instance map‘ interchange-
ably

In addition, for every pixel that belongs to the ‘things’ cat-
egories, we define the x-offsets and y-offsets as δx and δy,
respectively, of that pixel location from the center of the
instance the pixel belongs to. Here, instead of having the
above mentioned two parallel branches, we train a network
to obtain the center maps and the x and y offset maps from
the semantically extrapolated label maps that are the outputs
of stage-2. The ground-truth center maps are represented by
Gaussian blobs of standard deviation of 8 pixels, centered
at the instance centers. We use a simple L2 loss to compute
the instance center loss and L1 loss to compute the offset
losses. The final loss for stage-3 is the weighted sum of the
center loss and the offset losses.

During the test time, we adapt the procedure mentioned
by [1] to group the pixels based on the predicted centers and
off-sets to form instance masks. The instance masks and
the semantic label map (the input to stage-3) are combined
by majority voting to obtain the panoptic label map. The
thus obtained panoptic label map is used in stage-4 for our
instance-aware context normalization as well as to obtain
the instance boundary maps.

3. Instance-aware Context Normalization
(IaCN)

This module takes in input the cropped RGB image and
the generated panoptic label map from stage-3. The panop-
tic label map is used to get the partial instances. Partial
instances refer to the instances which are part of the input
image and need to be completed in the final out-painted im-
age. The per-channel (for RGB) mean color for each partial
instance is calculated as mean pixel value of all the pix-
els belonging to that instance. The feature map is obtained
by copying these mean colors (per-channel) to their respec-
tive extrapolated part of the partial instances in the outside
region. For all the instances that do not belong to partial
instances, the feature map values are zero. Figure 1 shows
some of the input-output pairs for IaCN module.



(a) Input image (b) Instance map (c) Feature map obtained by IaCN

Figure 1. Input-Output for IaCN. It computes the mean colors for all the partial instances from the cropped image and just ‘pastes’ them
in the extrapolated regions of the corresponding instances. For all the other instances, it has zero value (black).

4. Detailed Training and Testing algorithms

The detailed training algorithms for stage-2 and stage-4
are given in Algorithm 1 and 2.

To train stage-2 (as shown in Algorithm 1), we use the
ground truth segmentation map Sgt, ground truth panoptic
map Pgt and cropped segmentation map Sc

gt (obtained from
stage-1) as the inputs. We obtain segmentation map, Sz

gt, of
desired resolution by zero padding Sc

gt. An instance bound-
ary map, B is created from Pgt. Extrapolated segmentation
map Spog is generated using the generator G2 which has an
extra output channel (apart from the input classes) for the
boundary map. The multiscale discriminator, D2

multiscale dis-
tinguishes between the generated segmentation map (Spog)
and the ground truth segmentation map (Sgt). The model
tries to minimize the train objective function for semantic
label map extrapolation (Section 5.1). Finally, the parame-
ters of G2, D2

multiscale are updated accordingly.

To train stage-4 (as shown in Algorithm 2), we ob-

Algorithm 1: Training algorithm for stage-2
Input:
Ground Truth Segmentation Map:
Sgt ∈ {0, 1}2h×2w×c,
Ground Truth Panoptic Map: Pgt ∈ R2h×2w×1,
Cropped Segmentation Map: Sc

gt ∈ {0, 1}h×w×c

1 Generate Sz
gt ∈ {0, 1}2h×2w×c by zero-padding Sc

gt

2 Generate Boundary Map
B ←− GetBoundary(Pgt)

3 for epoch in maxEpochs do
4 Spog ←− G2(L1)
5 D2

multiscale distinguishes between Spog and Sgt

6 Minimize the objective function
7 Update the parameters of G2, D2

multiscale

8 return G2



tain Xcom by concatenating ground truth segmentation map
(Sgt), input image (Xc

gt), boundary map obtained from
ground truth instance map and the feature map obtained us-
ing IaCN module. The out-painted image (Y ) is generated
using the generator of stage-4 G4, which takes in Xcom and
the encoded input image (E4(Xc

gt)). The multiscale dis-
criminator D4

multiscale tries to distinguish between the gener-
ated image (Y ) and the ground truth image (Xgt). The co-
occurrence patch discriminator (D4

patch) tries to distinguish
between fake patch (crop(Y )) and real patch (crop(Xgt))
obtained from the fake image and real images respectively.
For each pair of fake patch and real patch, the patch dis-
criminator takes 4 reference patches (crops(Xgt)) from the
real image. We take a total of 4 fake patch, real patch
and reference patches combinations for one image. All the
patches are of size 64 × 64. We, then, minimize the final
objective function (Section 5.2) to update the parameters of
G4, E4, D4

multiscale and D4
patch.

Algorithm 2: Training algorithm for stage-4
Input:
Cropped Image: Xc

gt ∈ Rh×w×3,
Ground Truth Image: Xgt ∈ R2h×2w×3,
Ground Truth Segmentation Map:
Sgt ∈ {0, 1}2h×2w×c,
Ground Truth Panoptic Map: Pgt ∈ R2h×2w×1

1 Xcom ←− Sgt ⊕Xc
gt ⊕GetBoundary(Pgt)⊕

IaCN(Xc
gt, Pgt)

2 for epoch in maxEpochs do
3 Y ←− G4(Xcom, E4(Xc

gt))

4 D4
multiscale distinguishes between Y and Xgt

5 D4
patch distinguishes between crop(Y ) and
crop(Xgt), taking crops(Xgt) as the ref.
patches

6 Minimize the objective function
7 Update the parameters of

G4, E4, D4
multiscale, D

4
patch

8 return E4, G4

The detailed testing algorithm is given in Algorithm 3.
The semantic label map Sc corresponding to input image X
is obtained from PSPnet [13] in stage-1. The extrapolated
semantic label map Spog is generated from generator G2 of
stage-2. Spog is fed into stage-3 (Panoptic Label Genera-
tior) to get panoptic map P ′. Spog, X

c
gt, boundary map ob-

tained from P ′ and output of IaCN are concatenated into
X ′

com, which is given as input to generator G4 in stage-4 to
generate the extrapolated RGB image Y .

Algorithm 3: Testing algorithm

Input: Image: X ∈ Rh×w×3

Output: Outpainted Image: Y ∈ R2h×2w×3

1 Sc ←− PSPNet(Xc
gt) // Stage-1

2 Spog ←− G2(Sc) // Stage-2

3 P ′ ←− PanopticLabelMap(Spog) // Stage-3

4 X ′
com ←−
Spog ⊕X ⊕GetBoundary(P ′)⊕ IaCN(X,P ′)

5 Y ←− G4(X ′
com, E4(X)) // Stage-4

5. Objective Functions
This section describes all the loss functions used in dif-

ferent stages of training in detail. All the notations for dif-
ferent variables is the same as described in Section 4.

5.1. Stage-2

The objective function for stage-2 includes 4 losses:
GAN loss, discriminator feature matching loss, focal loss
and cross-entropy loss.

GAN loss: Sc
gt is the semantic label map correspond-

ing to input image, Sgt is the corresponding extrapolated
ground truth semantic label map. B is the ground truth
boundary map obtained from ground truth instance map
Pgt. Scom is channel-wise contatenation of Sgt and B. Spog

is the combined extrapolated sematic label map and bound-
ary map synthesised by G2. We replace GAN hinge loss
used in [7] with least square loss (LGAN ).

Feature matching loss: For stability in GAN training,
we use feature matching loss (LFM ) which is defined as,

LFM =
∑
i

1

Ni
[∥D2(i)(Scom)−D2(i)(Spog)∥1] (1)

where D2(i) represents i−th layer of discriminator D2 with
Ni elements.

Cross-entropy loss: We apply a cross-entropy loss
(LCE) on input Y ′′YY and Y defined as,

l(z, y) = −(ylog(z) + (1− y)log(1− z) (2)

LCE =
∑
h,w,c

l(z, y) (3)

where l(z, y) defines element wise cross-entropy loss for
particular (h,w, c), and LCE is the total cross-entropy loss.
y and z are the ground-truth and generated values at each
(h,w, c) location in Scom and Spog respectively.

Focal loss: To better account for representation of rare
semantic classes in the generated semantic label map, we



use focal loss [5] (LFL) defined as,

LFL =
∑
h,w,c

l(z, y)× (1− z)γ (4)

Training objective: The overall training objective for
this stage, hence, is L2,

L2 = min
G2

(LGAN + λFMLFM + λCELCE

+ λFLLFL)
(5)

5.2. Stage-4

The objective function for stage-4 includes 5 losses:
GAN loss, discriminator feature matching loss, perceptual
loss, KL-Divergence loss and Patch co-occurrence discrim-
inator loss.

GAN loss: Xc
gt is the input image. Xgt is the extrapo-

lated ground truth image. Sgt is the ground truth semantic
label map and Pgt is the ground truth instance map corre-
sponding to Sgt. Xcom is channel-wise concatenation of
Xc

gt, Sgt, boundary map obtained from Pgt and output of
IaCN module. Y is the extrapolated RGB image synthe-
sised by G4. For GAN loss (LGAN ) we use hinge loss sim-
ilar to [7]

Feature matching loss: For stability in GAN training
we use feature matching loss (LFM ) which is defined as,

LFM =
∑
i

1

Ni
[∥D4(i)(Xc

gt)−D4(i)(Y )∥1] (6)

where D4(i) represents i−th layer of discriminator D4 with
Ni elements.

Perceptual loss: We use VGG19 as feature extractor to
minimize the L1 loss between features extracted for Z ′ and
Y . Particularly, we define perceptual loss (LV GG) as,

LV GG =
∑
i

1

Ni
[∥Φ(i)(Xc

gt)− Φ(i)(Y )∥1] (7)

where Φi denotes i−th layer of VGG19 network.
KL divergence loss: We use KLD loss (LKLD), simi-

lar to [7] to train the VAE (defined in Section 3.4 in main
paper). It is defined as,

LKLD = DKL(q(z|x)||p(z)) (8)

where q is variation distribution and p(z) is a standard
Gaussian distribution.

Patch Co-Occurrence discriminator loss: In addition
to multiscale discriminator D4, we also use a patch co-
occurrence discriminator (described in detail in Section 3.4

Figure 2. Fraction/total number of images in the cityscapes train-
ing set where the ratio of number of instances outside the in-
put crop to the number of instances inside the input crop. For
k = 0.25, the peak occurs around 50%, for k = 0.5, the peak oc-
curs around 25% and for k = 0.75, the peak occurs around 10%.

of main paper). The patch co-occurrence discriminator loss
LCooccurGAN is defined as,

LCooccurGAN =

EY,Xc
gt
[−log(D4

patch(crop(G(Y )), crop(Xc
gt), crops(X

c
gt)))]

(9)

where crop(Xc
gt) function takes a random patch of 64× 64

from image Xc
gt and crops(Xc

gt) takes 4 random patches
from image Xc

gt, which serve as the reference patches.
Training objective: The overall training objective for

this stage, hence, is L4,

L4 = min
G4

(LGAN + λFMLFM + λV GGLV GG

+ λV GGLV GG + LCooccurGAN )
(10)



6. Additional Implementation details
We trained and tested our models on Cityscapes [2] and

ADE-20K bedroom subset [14] datasets. For stage-2 we
used a batch size of 8, while for stage-4 we used a batch
size of 16. All the experiments were run on 4 16GB Nvidia
Tesla V100 GPUs. Both the datasets were trained for 200
epochs. We used the TTUR [3] update rule.

7. Different crop analysis
We analyzed different crop sizes on Cityscapes dataset.

For given images X0(∈ Rh×w×c) in the dataset, we tried 3
different crop ratios k = {0.25, 0.5, 0.75}. We, thus, obtain
the cropped images X(∈ Rk.h×k.w×c). We calculated the
number of instances outside the crop region with respect to
those inside. If the number of instances in the region to be
extrapolated is very high as compared to those inside, the
information in the input data may not be sufficient to obtain
a reasonable extrapolation. While if it is low, the number
of new instances to be generated decreases, making the task
too easy for our algorithm. After analyzing the results (Fig-
ure 2), we observed that the value of k = 0.5 gives a good
trade-off between the two extremes.

8. Human Evaluation
We compare our method with the baselines also via

human subjective study. The baselines included results
from Partial Convolutions (PConv) [6], Boundless [10] and
OutPainting-SRN [12]. About hundred random people were
given a set of 20 randomly selected images from both the
datasets. They were given unlimited time to make the se-
lection. They were asked to rank the images based on two
parameters, viz. Realistic appearance and New object gen-
eration. Plot 3 shows the evaluation results. We found that
our results were strongly favoured by most of the people.

9. Infinite Zoom
Our model has ideally an infinite zooming out potential.

We can zoom out an image upto a good extent by recur-
sively passing through our model. We experimented this by
training on modified Cityscapes dataset, made by removing
the Mercedes at the bottom and then upsampling the im-
ages to the original dimension. We did this since if we “in-
finitely” zoomed out the original images, then there would
have been Mercedes recursively at the bottom in the zoomed
out images.

As shown in Figure 4, the input image is first passed
through our model to generate the output image, extrap-
olated 2 times in length and breadth. The output image
thus generated is downsampled to half the size of the out-
put image and is zero padded to generate the input image
for the next iteration. We continue this process recursively

6 times, in course of which we generate the 2×, 4 × · · ·
till 64× extrapolated images. To generate the frames for
the video, after generating the 2× extrapolated image, we
downsample it gradually by 2 pixels in height and 4 pix-
els in width and zero pad it. Thus, for every input-output
transition we generate 64 frames. There are 6 input-output
transitions and hence, 384 frames. We also add 30 frames
of the initial input at the beginning of the video for better
realisation of the input image. The videos corresponding to
some of the data images can be found in the project page
https://semie-iccv.github.io/.

10. Segmentation maps comparison
We highlighted the importance of using extra boundary

channel in semantic label extrapolation for better shapes of
the instances. In Figure 5 and 6, we compare our results
with those generated without boundary channel. We further
compare them with those generated using SPGNet [9] and
SPGNet++.

11. Why do single stage approaches fail?
All the baseline methods except SPG-Net are based on

direct image-to-image translation in a single stage. To anal-
yse the strength of our approach and the failure of sin-
gle stage approaches, we try direct image extrapolation by
image-to-image translation. For this, during the training
time, we used the RGB cropped input image and extrap-
olated it to the final RGB image using the stage-4, without
IaCN and Dpatch, directly (Figure 7) using SPADE network.
We observed that the images are generated with mere tex-
ture extension at the periphery with minimal to no new ob-
ject generation.

12. Additional results
In Figure 8 and 9, we show additional synthesized re-

sults from our method on Cityscapes dataset and compare
them with Partial Convolutions (PConv) [6], Boundless
[10], OutPainting-SRN [12], SPGNet [9] and SPGNet++.

In Figure 10, we show additional synthesized results
from our method on ADE20K dataset and compare them
with Partial Convolutions (PConv) [6], Boundless [10],
OutPainting-SRN [12], SPGNet [9] and SPGNet++.

https://semie-iccv.github.io/


Figure 3. User preference study on the rank of various baselines and our method. Lower rank means better.

Input Image 2 X zoom 16 X zoom 4 X zoom 8 X zoom 

158th to 222nd frames

Figure 4. Given an input image, we extrapolate the image recursively to obtain 2×, 4×, 8×, 16×, 32×, 64× extrapolations. Using the
extrapolated images, we obtain frames to make a video by performing naive ‘interpolation’ between the extrapolated images. We achieve
this by taking several crops of increasing sizes followed by bicubic downsampling to ensure all frames are of the same size. We show in
the figure how frames are generated by ‘interpolating’ between the 4× and 8× extrapolations.
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Figure 5. Additional semantic label extrapolation comparison. For each input image, the output of the PSPNet (stage-1) is shown in the
leftmost column and the corresponding semantic extrapolation methods are shown. Top row shows results for the two variants of our
method, with and without boundary channel regularizer. The bottom rows results for the two variants of the baseline, [9] and SPG-Net++.
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Figure 6. Additional semantic label extrapolation comparison. For each input image, the output of the PSPNet (stage-1) is shown in the
leftmost column and the corresponding semantic extrapolation methods are shown. Top row shows results for the two variants of our
method, with and without boundary channel regularizer. The bottom rows results for the two variants of the baseline, [9] and SPG-Net++.



(b) Extrapolation using single-stage appraoch(a) Input image (c) Extrapolation using our approach

Figure 7. Comparison between ours and single stage approach: (a) Input image (b) Extrapolated image using our single stage approach (c)
Extrapolated image using our current approach.
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Figure 8. Additional comparisons between our model and the baselines on Cityscapes dataset. The baselines include results from Partial
Convolutions (PConv) [6], Boundless [10], OutPainting-SRN [12], SPGNet [9], and SPGNet++.
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Figure 9. Additional comparisons between our model and the baselines on Cityscapes dataset. The baselines include results from Partial
Convolutions (PConv) [6], Boundless [10], OutPainting-SRN [12] and SPGNet [9], SPGNet++.
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Figure 10. Additional comparisons between our model and the baselines on ADE-20K dataset. The baselines include results from Partial
Convolutions (PConv) [6], Boundless [10], OutPainting-SRN [12], SPGNet [9], and SPGNet++.
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