
Supplementary Material for
Deep Edge-Aware Interactive Colorization against Color-Bleeding Effects

This supplementary material complements our pa-
per with additional experimental results and their analy-
sis. First, Section A presents how insensitive our edge-
enhancing method is across the different real-world users.
Then, qualitative results of the ablation study are presented
in Section B, followed by an explanation about the analy-
sis on our proposed metric CDR, with an example in Sec-
tion C. In Section D, we provide the qualitative comparisons
between our approach applied in encoder and decoder lay-
ers as well as their analysis. As an interactive colorization
approach, we construct our own user interface, where users
can draw scribbles with adjustable widths for edge enhance-
ment. Section E describes this tool with the step-by-step
demonstration. Furthermore, we provide additional quanti-
tative and qualitative results of our method applied in two
baselines (Zhang et al. [1] and Su et al. [2]) over various
datasets, in Sections F and G. Moreover, Section H con-
tains both quantitative results and qualitative examples of
edge enhancements in sketch colorization, complementary
to Section 5 in the main paper. Lastly, Section I provides
the implementation details, such as the settings for train-
ing, network architecture, and hyper-parameters for edge-
extracting modules in the generation of Spseudo.

A. Robustness of Edge Enhancement across
Users

To verify the robustness of the proposed method against
ambiguous scribbles across different users, we measure the
improved PSNR, LPIPS, and CDR on the enhanced col-
orization outputs obtained by different users. To this end,
among the color-bleeding edges that were used in the user
study (Section 4.4 in the main paper), we selected the scrib-
bles for the edges that were enhanced by at least four differ-
ent participants in our user study. For each edge, we calcu-
lated the improvement of these evaluation scores in the local
regions near the scribbles drawn by the different users, fol-
lowing the same evaluation procedure in Section 4.4 in the
main paper. The resulting mean and standard deviation are
3.380±1.381, 0.031±0.009, and 0.044±0.031 for PSNR,
LPIPS and CDR, respectively. These results indicate that
our method achieves consistent improvement under various
scribbles drawn by different users. In addition, we provide
a qualitative example of these results in Fig. 1 with their
evaluation scores. Our method robustly improves the color-
bleeding edges given varying styles of the user scribbles.
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Figure 1: We visualize the initial colorization (first column)
and its enhanced outputs by four different users (second to
fifth column). Enlarged views of edge-enhanced regions
and user-given scribbles are provided in blue boxes. Val-
ues in the brackets indicate the improved metric scores from
those of the initial output. Zoom in for detail.

B. Ablation Studies on Width Augmentation
and Consistency Loss

This section provides the qualitative results of ablation
studies on the scribble width augmentation w(·) and the
consistency loss Lcon, described in the Sections 3.2 and 3.4
in the main paper, respectively. In Fig. 2, the first column
shows a binary map of user-driven scribble with its width
varying from 1 to 11 pixels. The columns named Sdiff,a and
Sdiff,b represent how the edge values are changed in CIE
ab channels. Sdiff,a and Sdiff,b are obtained by subtracting
S(Iinit,ab) from S(Iab), where S(·) approximates the edges,
as described in Eq. 2 in the main paper, and Iinit,ab is an
initial colorized output by a backbone network and Iab is a
refined output by our method.

The fourth column (w/o w(·)) presents the generated out-
puts of the model trained without width augmentation in a
training phase, while the seventh column (Full) contains the
outputs with augmentation. As the width of given scribbles
w increases, especially when w becomes larger than 5, the
width of changed edges Sdiff,a and Sdiff,b become thick as
well. This results in an excessive increase of edges in ab
channels, producing extremely vivid colors (e.g., red) along
the given boundaries. In contrast, our model trained with
augmentations w(·) maintains the increases of enhanced
edges regardless of given scribble’s widths, robustly gener-
ating the plausible color corrections for all possible scrib-
bles. This allows the users to provide their interactions
without giving much effort to drawing sharp and thin scrib-
bles.

Fig. 3 compares the qualitative results of our model
trained with and without Lcon. As explained in Section 3.4
in the main paper, Lcon enforces our model not to gener-
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Figure 2: Qualitative comparisons between the generated outputs from our model trained with and without width augmenta-
tion w(·) for Spseudo in the training. The fourth column contains the results of our model without w(·), and seventh column
corresponds to the results of our model with all the proposed techniques, including w(·).
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Figure 3: Qualitative comparisons between the generated
outputs from our approach trained with and without Lcon in
the training. The column denoted as w/o Lcon contains the
results of our model without Lcon, and the column denoted
as Full corresponds to the results of our model with all the
proposed techniques, including Lcon.

ate unintentional color changes outside of the target edges.
Therefore, the model trained without this objective func-
tion tends to produce unnecessary changes of colors in
the wrong regions. As shown in third and fourth rows,
Sdiff,a and Sdiff,b of the model with Lcon shows more sparse
changes of pixels, compared to that without Lcon. Ablation
of Lcon causes color distortions, such as washed-out colors
or unintended color changes, illustrated in the images with
blue bounding boxes. For example, a woman with a pink
vest contains a washed-out color on her right side of the
vest. This can be observed in the Sdiff,a, specifically in the
dark boundaries of the vest (decreased edges).

C. Analysis on Cluster Discrepancy Ratio

This section provides a specific example that demon-
strates the necessity of our proposed metric, i.e., CDR. As
mentioned in Section 4.1 in the main paper, this metric aims
to cover the blind spot of two generally used metrics PSNR
and LPIPS [3] in the colorization task. In Fig. 4, the first
and the second columns are the ground-truth and colorized
output I1 with color-bleeding artifacts in the yellow box, re-
spectively. I2 is another example of colorized output with
its bleeding edge enhanced by our proposed approach. Note
that this is colorized with a different color from the ground-
truth, enabled by providing user-interactive color hints. As
I2 contains the different colors from the ground-truth, un-

like I1, it is shown to record lower PSNR and higher LPIPS
score than I1. However, I2 contains a clear color edge,
while I1 contains the color-bleeding effects, which make
I2 more visually favorable than I1. The results of these
metrics on I2 against I1 represent that they often underrate
the quality of realistic sharp images that contain different
colors from ground-truth. Our metric, however, essentially
evaluates whether the colors are different across the adja-
cent objects and less dependent on the ground-truth colors.
Therefore, the discrepancy ratio achieves a higher score for
I2 compared to I1, showing that it is possible to robustly
evaluate the color-bleeding artifacts.

Note that the sole use of our metric for evaluating col-
orization methods also reveals a bottleneck as mentioned in
Section 4.3 in the main paper. More specifically, as our met-
ric focuses on evaluating whether the colors are different be-
tween edges, saturated colors along the edges can be evalu-
ated as favorable. Therefore, it is recommended to consider
all of these metrics to fully evaluate the general colorization
performance, including the edge preservation.
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Figure 4: Quantitative comparisons of the colorized out-
puts, I1 and I2, via PSNR, LPIPS [3] and CDR. The yel-
low box provides the enlarged view on the regions of color-
bleeding effects appearing in I1, while enhanced in I2 by
our proposed method. Three evaluation scores for each im-
age are presented below.
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Figure 5: Qualitative comparisons of edge-enhancing net-
work applied in encoder and decoder layers. Ienc and Idec
denote the enhanced results of the respective setting.
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Figure 6: A step-by-step demonstration of an edge enhancement via our proposed user interface tool.

D. Selecting Layers for Edge-Enhancing Net-
work

As briefly described in Section 3.3 in the main paper, we
empirically find that applying edge-enhancing network E
in the encoder layers achieves the intended results. To show
the effectiveness of this choice of layers, Fig. 5 compares
the results of E applied in encoder and decoder layers, Ienc
and Idec. It is shown that Ienc successfully preserves the
edges between the different objects, correcting the colors
spreading in the regions. For example, by giving a vertical
scribble, wrongly spread green pixels inside the fire hydrant
are corrected to a red color. However, Idec merely increases
the color difference along the edges without removing the
green pixels inside the edges. We believe that E applied in
the encoder layers refines the representations related to the
edges, helping the following layers to spread the colors cor-
responding to the enhanced edges. In this regard, we choose
encoder layers of the backbone network as an appropriate
option for integrating E.

E. User-Interaction Demonstration

This section provides a step-by-step demonstration of
edge enhancement through our user interface tool, as illus-
trated in Fig. 6. First, the user uploads and colorizes an

input image (left panel) with additional color hints by click-
ing the Colorize button. Then, the user adjusts the width of
the scribble and draws on color-bleeding edges of the col-
orized image shown in the left panel. After applying the
scribbles, clicking the Edge Enhance button forwards the
drawn scribbles into our edge-enhancing network to correct
the annotated edges and show the improved result in the
right panel.

F. Additional Quantitative Results
As described in Section 4 in the main paper, we apply

CIC [7], DeOldify [8] and Zhang et al. [1] as our baseline
models for unconditional colorization, and Zhang et al. [1],
Su et al. [2] as our baseline for conditional colorization task.
Table 1 contains the additional rows of quantitative compar-
isons of our model and baselines in the kernel size of 15
and 23, complementary to Table 1 in the main paper. For
the qualitative results, we demonstrate that our framework
is applicable to Zhanget al., which is the most widely used
conditional colorization method, and Su et al., which is a
recently proposed colorization approach. Utilizing our ap-
proach on these backbone networks improves the general
colorization quality over the various dataset, outperform-
ing the existing baselines. As our approach significantly
improves the local color-bleeding artifacts, it improves the



Kernel Size Method ImageNet ctest [4] COCO-Stuff [5] Place205 [6]

LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

K=7

CIC [7] 0.248 13.281 0.247 13.368 0.254 13.577
DeOldify [8] 0.250 13.234 0.251 13.059 0.227 14.258

Zhang et al. [1] 0.246 13.248 0.206 14.755 0.219 14.815
+Ours 0.217 13.919 0.192 15.037 0.211 15.104

Zhang et al. [1]∗ 0.208 14.966 0.158 17.456 0.171 17.530
+Ours∗ 0.177 16.041 0.143 17.953 0.161 17.906

Su et al. [2]∗ 0.185 16.393 0.187 15.971 0.194 17.032
+Ours∗ 0.177 16.507 0.176 16.188 0.187 17.098

K=15

CIC [7] 0.221 14.377 0.237 13.937 0.219 14.841
DeOldify [8] 0.218 14.399 0.217 14.362 0.226 14.382

Zhang et al. [1] 0.209 14.662 0.204 14.975 0.218 14.962
+Ours 0.195 14.963 0.191 15.144 0.210 15.204

Zhang et al. [1]∗ 0.181 16.278 0.155 17.708 0.169 17.739
+Ours∗ 0.159 17.113 0.142 18.144 0.161 18.054

Su et al. [2]∗ 0.166 17.335 0.169 17.000 0.177 17.889
+Ours∗ 0.159 17.477 0.159 17.225 0.170 18.004

K=23

CIC [7] 0.221 14.394 0.220 14.596 0.227 14.635
DeOldify [8] 0.226 14.171 0.216 14.431 0.225 14.458

Zhang et al. [1] 0.210 14.696 0.204 14.975 0.217 15.056
+Ours 0.195 14.987 0.191 15.180 0.210 15.282

Zhang et al. [1]∗ 0.164 17.195 0.154 17.806 0.169 17.864
+Ours∗ 0.147 17.868 0.141 18.204 0.161 18.147

Su et al. [2]∗ 0.154 17.945 0.156 17.611 0.164 18.567
+Ours∗ 0.148 18.081 0.148 17.840 0.158 18.689

K=Full

CIC [7] 0.172 21.001 0.164 21.456 0.153 21.873
DeOldify [8] 0.159 21.433 0.149 21.985 0.156 21.933

Zhang et al. [1] 0.148 21.981 0.135 22.729 0.138 22.846
+Ours 0.147 22.026 0.134 22.729 0.138 22.845

Zhang et al. [1]∗ 0.086 27.202 0.080 27.681 0.087 27.697
+Ours ∗ 0.085 27.559 0.078 27.955 0.087 27.935

Su et al. [2]∗ 0.091 26.211 0.089 26.050 0.090 27.414
+Ours∗ 0.091 26.291 0.088 26.233 0.089 27.486

Table 1: Quantitative comparison with the baselines on 1,000 images in the ImageNet ctest [4], COCO-Stuff [5] and
Place205 [6] validation set. Quantitative results in the local region show that our method effectively enhances the images.

applied baselines, especially when evaluated near the edge
regions (i.e., small kernel size).

Table 2 demonstrates the robustness of edge enhancing
performance applied in Zhang et al. when the width of a
given scribble varies from 1 to 9 pixel diameters. For the
CDR, we evaluate it within the kernel size of 7 along the
given edges. We observe that our model robustly enhances
the local colorization performance in every dataset, given
any scribble widths. Similar to the Table 1, the difference
of global score between our model and baselines becomes
minor when averaging the scores over all the spatial dimen-
sions.

G. Additional Qualitative Results
Figs. 8 and 9 present the qualitative examples of edge

enhancement applied to Zhang et al. [1], and Su et al. [2],
respectively. The second and third columns of the figures
contain the inference outputs of the baselines and their en-
hanced images using our method, respectively. Their scrib-
bles, which are used to enhance the images, are visualized
in the fourth column. Yellow boxes in the second column
represent color-bleeding areas. All the images are collected
from https://unsplash.com and Place205 [6].

The qualitative comparisons between our method, espe-
cially applied to Zhang et al. [1], and other baselines, are

https://unsplash.com


Kernel Size Datasets Metrics Zhang et al.
[1]∗

Scribble Width

1 3 5 7 9

K=7

ImageNet ctest [4]
LPIPS↓ 0.208 0.182 0.178 0.174 0.166 0.203
PSNR↑ 14.966 15.877 16.040 16.022 16.303 14.862
CDR↑ 0.376 0.411 0.436 0.451 0.471 0.447

COCO-Stuff [5]
LPIPS↓ 0.211 0.185 0.181 0.174 0.168 0.180
PSNR↑ 14.964 15.790 15.938 16.074 16.210 15.594
CDR↑ 0.372 0.417 0.446 0.465 0.478 0.459

Place205 [6]
LPIPS↓ 0.223 0.205 0.201 0.193 0.190 0.201
PSNR↑ 15.091 15.714 15.877 16.036 16.100 15.540
CDR↑ 0.330 0.389 0.409 0.431 0.438 0.425

K=Full

ImageNet ctest [4]
LPIPS↓ 0.086 0.085 0.085 0.085 0.084 0.087
PSNR↑ 27.202 27.555 27.558 27.510 27.554 27.293
CDR↑ – – – – – –

COCO-Stuff [5]
LPIPS↓ 0.080 0.078 0.078 0.078 0.078 0.079
PSNR↑ 27.677 27.964 27.959 27.953 27.939 27.880
CDR↑ – – – – – –

Place205 [6]
LPIPS↓ 0.087 0.087 0.087 0.087 0.087 0.087
PSNR↑ 27.697 27.945 27.931 27.926 27.897 27.877
CDR↑ – – – – – –

Table 2: Quantitative results based on scribble width. The scores for the CDR are reported only in the local regions along the
edges, within the kernel size of 7.

presented in Fig. 10. While all the baselines in the figure
contain the color-bleeding artifact in the regions bounded
with a yellow box, our approach improves the edges, as
shown in the fourth and sixth columns. Yellow boxes indi-
cate the color-bleeding areas, and we provide the enlarged
views of the areas on the right lower corner in the im-
ages. The images are selected from COCO-Stuff [5] and
Place205 [6].

H. Quantitative and Qualitative Results in
Sketch Colorization

In Section 5 in the main paper, we demonstrate that our
approach has the potentials to enhance the edges in the
sketch colorization task as well. In this study, we utilize the
two datasets, Yumi’s Cells [9] and Danbooru [10]. Table 3
demonstrates that applying edge-enhancing network on the
colorization model, newly trained for sketch colorization
task, can also improve the performance, especially along the
edge regions. Additional qualitative results complementary
to the Fig 7 in the main paper are illustrated in Fig. 7.

I. Implementation Details
This section provides the training details for edge en-

hancement, detailed architecture of the edge-enhancing net-
work, and hyper-parameters used in Spseudo generation,
complementary to Section 3.5 in the main paper. Afterward,

hyper-parameters of the super-pixel methods for our pro-
posed CDR are explained as well. Additionally, the imple-
mentation details of the sketch colorization are explained,
complementary to the Section 5 in the main paper.

Training Details for Edge-Enhancing Network We train
and evaluate our model with a fixed size of 256 × 256 im-
ages for every dataset. We apply three edge-enhancing net-
works on the 5th, 10th and 17th encoder layers of Zhang
et al. [1]. In Su et al. [2], the instance-level colorization
branch takes the patches of images cropped by their bound-
ing boxes after the object detection module. These object-
level colorized outputs are fused into a full-image coloriza-
tion branch via fusion modules, predicting the final colors.
For the full-image branch, we provide the pseudo-scribbles
for the full image, as we do in Zhang et al. To accommodate
our interactions into this object-level colorization branch as
well, we crop the pseudo-scribbles as well as the images
by their bounding boxes and give them to the branch as in-
puts. Therefore, our edge-enhancing networks applied in
this branch take the cropped scribbles corresponding to the
cropped patches of color-bleeding artifacts, generating the
refined activations to be fused into the full-image branch.
Both three edge-enhancing networks are applied on the
5th, 10th and 17th encoder layers of instance-level and full-
image network, respectively. In the training phase, we set
the hyper-parameters for each loss function as λedge = λcon
= 50 and λreg1 = λreg2 = λreg3 = 1 in Zhang et al., and
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Figure 7: Qualitative examples of edge enhancement on sketch colorization. Yellow boxes provide a view of color-bleeding
regions.

Kernel Size Method Yumi’s Cells [9] Danbooru [10]

LPIPS↓ PSNR↑ CDR↑ LPIPS↓ PSNR↑ CDR↑

K=7 Zhang et al. [1]∗ 0.240 10.738 0.231 0.322 11.970 0.191
+Ours∗ 0.226 11.287 0.298 0.317 12.335 0.214

K=15 Zhang et al. [1]∗ 0.217 12.194 – 0.374 9.829 –
+Ours∗ 0.210 12.487 – 0.371 10.092 –

K=23 Zhang et al. [1]∗ 0.219 12.211 – 0.290 12.146 –
+Ours∗ 0.211 12.531 – 0.286 12.448 –

K=Full Zhang et al. [1]∗ 0.153 19.280 – 0.204 18.698 –
+Ours∗ 0.154 19.291 – 0.201 18.975 –

Table 3: Quantitative comparison with the baselines in the Yumi’s Cells [9] and Danbooru [10] validation set. The scores for
the CDR are reported only in the local regions along the edges, within the kernel size of 7.

Datasets σ THh THl THgap

ImageNet [4] 1.2 0.7 0.2 0.4
COCO-Stuff [5] 1.2 0.7 0.2 0.4
Place205 [6] 1.2 0.7 0.2 0.4
Yumi’s Cells [9] 1.3 0.7 0.2 0.4
Danbooru [10] 0.7 0.8 0.2 0.5

Table 4: Hyper-parameters for the Canny edge-extractor.

λedge = 50 and λcon = λreg1 = λreg2 = λreg3 = 10 in Su et
al. The width of the augmentation module for the Spseudo

is randomly sampled from 1 to 10 pixels in the training
phase. We use Adam [11] optimizer with β1 = 0.9 and
β2 = 0.999. The learning rate is initially set to 0.01 and is
gradually decayed for every epoch.
Edge-Enhancing Network Architecture Edge-enhancing
network consists of 4 convolutional layers, each of which
contains a 3×3 convolution filter with a stride of 1,
ReLU [12] and Batch normalization layer [13].
Pseudo-Scribble Generation For generating the plausi-

ble approximation of real user-provided scribbles, we tune
the hyper-parameters of the Canny edge extractor [14]1 on
every dataset, including ImageNet [4], COCO-Stuff [5],
Place205 [6], Yumi’s Cells [9] and Danbooru [10], writ-
ten in Table 4. We report Sigma (σ), high-threshold (THh),
low-threshold (THl), and threshold gaps (THgap) of each
dataset. Sigma stands for the standard deviation of the
Gaussian kernel for the noise reduction step. Both THh

and THl denote the threshold values for the double thresh-
old step after the non-maximum suppression. We apply dif-
ferent high thresholds for Igt,ab and Iinit,ab to select highly
probable edges for the bleeding artifacts. In other words, we
apply a rigid criterion on the ground-truth image for extract-
ing the edges compared to the generated outputs, resulting
in severely weak edges from this comparison. We denote
this threshold gap as THgap.
Cluster Discrepancy Ratio We use simple linear iterative
clustering [15] (SLIC) method to assign each pixel with a
cluster assignment based on its colors and textures. To focus
on the color information, we run the SLIC on ab channels of

1Canny edge-extractor consists of 5 steps, which include noise re-
duction, Sobel filtering, non-maximum suppression, double threshold and
edge tracking.



both ground-truth and colorized outputs. We set the number
of clusters to 250, compactness to 10, and sigma to 1 for
each image. After we compute each ratio from the a and b
channels and average them to produce the final score.
Sketch Colorization We adjust the part of architecture and
the training details of Zhang et al. [1] to enable its coloriza-
tion with local hints in the sketch colorization task. We
replace 1) the input image from gray-scale to sketch im-
age, and 2) output channel size from 2 for ab channels to
3 for RGB outputs. To obtain the sketch image from the
color image of each dataset, we first apply Gaussian blur-
ring (σ = 0.7) to remove noisy edges and utilize a widely
used edge extractor algorithm called XDoG [16], as used
in Lee et al. [17] for the sketch colorization task. After-
ward, we obtain 54,317 training images and 6,036 test im-
ages for Yumi’s Cells [9], and 7,014 and 380 images for
Danbooru [10]. Then, we apply the training details pro-
posed in the original paper [1], such as providing color hints
and objective functions. Note that the objective functions
for color prediction are adjusted from minimizing the dif-
ference of ab channels to RGB channels between generated
output and the ground-truth. To train our model on this net-
work, we convert both generated RGB outputs images and
ground-truth into Lab images to apply our proposed objec-
tive edge-enhancing loss.
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Figure 8: Qualitative results of edge-enhancement in the conditional colorization setting.
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Figure 9: Qualitative results of edge-enhancement in the conditional colorization setting.
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Figure 10: Qualitative comparisons between our model and other baseline models.
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