
Online-trained Upsampler for Deep Low Complexity Video
Compression

—Supplementary Material—

Jan P. Klopp
National Taiwan University

kloppjp@gmail.com

Keng-Chi Liu
Taiwan AI Labs

calvin89029@gmail.com

Shao-Yi Chien Liang-Gee Chen
National Taiwan University

sychien@ntu.edu.tw lgchen@ntu.edu.tw

7. Additional Results
7.1. Convergence Ablation

While fast encoding is not critical in offline encoding
(e.g. as performed for video on demand), it can reduce re-
source usage and enable high latency online encoding (e.g.
non-responsive content like sports events). Fig. 10 shows
coding gain as a function of the training iterations. The
graphs are annotated with the average use of a pixel as train-
ing data (at 100%, a pixel is seen once during training on
average). As all datasets receive the same optimisation, this
only depends on the frame size. For high resolutions, this
number drops far below 100% for 250 iterations. Never-
theless, the gains drop only moderately, especially for the
JVET A dataset. This observation indicates local general-
isation that at least holds for data in the temporal/spatial
vicinity of the training data. Hence even with few training
cycles, the coding gains are still significant.

7.2. Generalisation Ablation

Due to space constraints, the generalisation ablation for
128 frames did not fit in the main paper and can be found
in Fig. 11. Like the results for 32 frames in the main paper,
one can observe that halving the number of frames available
for training does not severely impact the coding gain.

7.3. Gain Distribution over Rate and Distortion

If our method mainly improved sequences with a high
PSNR at a low data rate (i.e., low bandwidth demand), this
may show great improvements but not translate into band-
width reduction in practice. This issue depends on the dis-
tribution of sequences within a dataset. Figures 12, 13,

Figure 10. BDRate savings over number of optimisation iterations
spent on one group of 32 pictures. Percentages indicate the amount
of training pixels over the total number of pixels in a group.

Figure 11. BDRate savings over the number of frames available
for training in each group of pictures. Frames are taken from the
beginning of the group. The group size is 128 frames.

11

and 14 show the rate saving distribution over rate and PSNR
for the remaining three quality steps (the one for QP=22 is
in the main paper). Sequences in the bottom right corner
are likely to be more challenging to encode efficiently as
their PSNR is low while their rates are high. Their rates
are almost an order of magnitude above the majority on the
left-hand side. Similar to the graphic in the main paper, the
gains provided by our algorithm do not follow any obvious
distribution, and high bandwidth sequences do also achieve
high gains.

Figure 12. Distribution of rate savings over rate and distortion at
test QP 27 (QP 22 for the underlying low resolution codec). Sav-
ings are indicated by the radius of each blob.

Figure 13. Distribution of rate savings over rate and distortion at
test QP 32 (QP 27 for the underlying low resolution codec). Sav-
ings are indicated by the radius of each blob.

7.4. Average Rate Shares
In addition to the results in the main paper, Table 8 shows

the average rate share of the network’s parameters for other
datasets. The dataset for which this data was presented in
the main paper (UVG FHD) contains more low bandwidth
sequences, not only due to the lower resolution but also
because the content is simpler (less motion and texture in
some sequences). The results presented here show that even
under low-quality conditions, our algorithm’s overhead re-

Figure 14. Distribution of rate savings over rate and distortion at
test QP 37 (QP 32 for the underlying low resolution codec). Sav-
ings are indicated by the radius of each blob.

mains in the single-digit range, hardly exceeding 3% for
offline encoded sequences.

Table 8. Average rate share for different datasets, given for each
QP of the conventional codec that encodes the low resolution sig-
nal. The zero-latency data refers to a signalling interval of 16
frames.
Dataset Offline Zero Lat. 17 22 27 32

JVET A X 0.4% 0.7% 1.2% 2.2%
CTC A X 0.4% 0.8% 1.6% 3.1%
JVET 360 6K X 0.3% 0.5% 1.3% 2.2%
JVET 360 8K X 0.3% 0.5% 1.0% 2.0%
Xiph UHD X 0.2% 0.4% 0.9% 1.9%

JVET A X 0.5% 1.2% 2.3% 4.4%
CTC A X 0.4% 1.2% 3.0% 7.1%

7.5. LPIPS
Learned Perceptual Image Patch Similarity [46] has been

proposed as a learned metric for image fidelity. The metric
has been tuned according to feedback from human raters
viewing an original and a distorted image. Various kinds
of noise have been applied to the original image, among
them also JPEG compression. Table 9 shows the results
of testing LPIPS on the PSNR-trained models, i.e. without
tuning to the LPIPS metric, for three datasets. The results
show similar or even higher improvements than testing on
PSNR, indicating that our PSNR/MS-SSIM results are not
overfitting to the particular metric. A simple intuition is
that our method uses comparably few parameters to perform
upsampling. Hence overfitting to a metric may be less likely
than with more complex methods.

8. Quantisation
The number of bits reserved for weights (Qw) and bias

(Qb) decreases with decreasing quality, i.e. increasing

Table 9. Bjontegaard Deltas for Rate and Distortion as measured
by PSNR and LPIPS over x265 with tune psnr. LPIPS measures
were obtained by optimising for PSNR (i.e. MSE). Negative rate
savings indicate that our method requires fewer bits of code to
deliver the same quality. All quality measures are taken in dB,
LPIPS was converted to log scale (decibel) as follows: LPIPSdB =
�10.0 log (LPIPS)

PSNR LPIPS

�Rate �PSNR �Rate �LPIPS

CTC A -13.6% +0.2954 -11.5% +0.0295
JVET A -18.4% +0.4813 -25.6% +0.4059
UVG FHD -16.3% +0.5156 -34.8% +0.6175

quantisation parameter q as listed in Tab. 10.

Table 10. Quantisation bitdepth for weights and bias depending on
quantisation parameter q.

QP q Qw Qb

q  20 12 10
20  q  25 11 9
25  q  30 10 8
30  q 9 8

9. Pre-Training
Figure 15 displays the concept of pre-training exploited

in our work in a simplified manner.

Initial Starting Point Target for Seq. 1

Target for Seq. 2

Target for Seq. 3

Target for Seq. 4

REPTILE Update

Figure 15. Simplified schematic of the behaviour of NN parame-
ters in the pre-training process. By averaging the parameter up-
dates (coloured arrows) for several different sequences a better
initial starting point is reached (black dashed arrow). This new
starting point is then used for a different sequence (i.e. not se-
quences 1 to 4) to obtain an objective measurement of the impact
of REPTILE.

10. Algorithms
This section lists the algorithms we used to make repro-

duction easier and allow for a more detailed understanding.
Table 11 lists the relative resolutions (with respect to the

Table 11. Resolutions relative to the resolution of the original se-
quence.

Variable Symbol Relative Resolution

Original sequence x 1⇥ 1
Bilinear downsampled seq. x1/2

1/2⇥ 1/2

Reconstructed downs. seq. x̂1/2
1/2⇥ 1/2

Internal features zint 1/4⇥ 1/4

Encoded int. feat. zEnc 1/2⇥ 1/2

Absolute positions pAbs 1/2⇥ 1/2

Encoded positions pEnc 1/2⇥ 1/2

Attention weightings zAtt 1/2⇥ 1/2

Reconstructed sequence x̂ 1⇥ 1

original sequence) for most variables used throughout the
paper and the algorithm listings. Algorithm 1 contains the
main steps for the encoding and the decoding procedure on
a high level. Algorithm 2 describes in detail all steps re-
quired to compute the inference through the proposed net-
work architecture. Algorithm 3 contains the training and
quantisation procedures. The pre-training is listed in Algo-
rithm 4. Lastly, Algorithm 5 describes the position encod-
ing process.

11. Network Architectures
In this section, we list the network architecture for fFeat,

fPos, and fDenoise in Tables 12, 13, and 14, respectively.
Also, Tables 15 and 16 describe the network architecture
used in the comparision with [16].

Algorithm 1: Encoding & Decoding Procedure.

Result: Network parameters ⇥, reconstruction X̂ ,
Conventional code Y1/2

Input: Conventional codec C, quantisation parameter
q, hyperparameters �, image sequence x,
length of a frame group NFrame

1 # — Encode —
2 ⇥ ; # CNN parameters
3 Y1/2 ; # Conventional code
4 if ✓init not yet available then
5 ✓Init PreTrain (. . .) # Algorithm 4
6 end
7 foreach frame group i do
8 # i: indices to all frames in the frame group
9 x1/2 BilinRescale(x[i], 0.5) # Resize

10 y1/2 CEnc(x1/2, q) # Conventional encoding
11 x̂1/2, zint CDec(y1/2) # Rec. & Internal Signal
12 ✓q Training(x[i], x̂1/2, zint, �, ✓Init) #

Algorithm 3
13 ⇥ ⇥ [✓q

14 Y1/2 Y1/2 [y1/2

15 end
16 # — Decode —
17 X̂ ; # Reconstruction
18 foreach

�
✓q, y1/2

�
2
�
⇥,Y1/2

�
do

19 x̂1/2, zint CDec(y1/2) # Rec. & Internal Signal
20 x̂ Inference(x̂1/2, zint; ✓q) # Algorithm 2
21 X̂ X̂ [x̂

22 end

Algorithm 2: Network Inference.
Result: Output x̂ of resolution H ⇥W

Input: Network parameters ✓, low resolution
reconstruction x̂1/2, internal signals zint

1 # Prepare Input: Upsample U,V to H/2⇥W/2
2 x̂in,Y x̂1/2,Y

3 x̂in,U BilinRescale
�
x̂1/2,U , 2.0

�

4 x̂in,V BilinRescale
�
x̂1/2,V , 2.0

�

5 # Prepare encoded positions (Algorithm 5)
6 (⌦t,�t) ✓Temp # Temporal frequencies/phases
7 (⌦s,�s) ✓Spat # Spatial frequencies/phases
8 pEnc PosEnc (H/2,W/2,⌦t,�t,⌦s,�s)
9 # Process internal features

10 zEnc fFeat (zint; ✓Feat)
11 # Prepare input for attention network
12 zAtt fPos (concat (zEnc, pEnc; dim=1) ; ✓Pos)
13 # Compute the Denoiser’s output
14 # Resolution here is H/2, W/2
15 oLast ; # Initialise last layer’s output
16 foreach Layer l do
17 # Provide input (layers 1, 5, 7)
18 if l requires input then
19 oLast concat (x̂in, oLast; dim = 1)
20 end
21 # Attention weighting (layer 6’s input)
22 if l requires attention then
23 oLast oLast � sigmoid (zAtt)
24 end
25 oLast fDenoise,Layer=l (oLast; ✓Denoise,Layer=l)
26 end
27 # Split output (channels 1-4! Y , 5! U , 6! V)
28 oY , oU , oV split (oLast; [1, 2, 3, 4] , [5] , [6])
29 # Unshuffle Y from the channel to spatial dimension
30 oY depth2space(oY ; [2, 2])
31 # Resolution of oY is now: H ⇥W

32 # Compute the final output
33 x̂Y BilinRescale

�
x̂1/2,Y , 2.0

�
+ oY

34 x̂U BilinRescale
�
x̂1/2,U , 2.0

�
+ oU

35 x̂V BilinRescale
�
x̂1/2,V , 2.0

�
+ oV

Algorithm 3: Network Training.
Result: Quantised network parameters ✓q
Input: Initial network parameters ✓Init, target x, low

resolution reconstruction x̂1/2, internal signals
zint, hyper parameters �, loss function L

1 ✓t ✓Init
2 for �iter iterations do
3 xb, x̂1/2,b, zint,b

SamplePatches
�
x, x̂1/2, zint; �patchSize, �batchSize

�

4 x̂b Inference
�
x̂1/2,b, zint,b; ✓t

�
Algorithm 2

5 ✓t Adam
�
@L
@✓

(xb, x̂b) ; �lr
�

6 end
7 # Quantise ✓t

8 ✓
q ;

9 # Iterate over all layers in all networks
10 foreach layer l do
11 # Remove batch normalisation (before conv)
12 # Only filter index f and channel index c shown
13 w

0
f,c
 wf,c

�c

14 b
0
f
 bf �

P
c

wf,cµc

�c

15 # Qw bits for weights, Qb for bias (see Tab. 10)
16 Qw, Qb �Quant
17 # Value ranges
18 rw 2Qw�1 � 1
19 rb 2Qb�1 � 1
20 # Weight quantisation per channel:

21 ↵c round
⇣

rw
maxk |wk,c|

⌘

22 w
q

f,c
 b0.5 + w

0
f,c

↵c
c

23 # Bias quantisation:

24 � round
⇣

rb
maxk |b0k|

⌘

25 b
q b0.5 + b

0

�
c

26 ✓q ✓q [{�, bq}
27 foreach channel c do
28 ✓q ✓q [

n
↵c, w

q

f,c

o

29 end
30 end
31 # No quantisation necessary for position encoding

parameters
32 ✓Temp (⌦t,�t)
33 ✓Spat (⌦s,�s)

Algorithm 4: Pre-training.
Result: Initial network parameters ✓Init for

quantisation parameter (quality) q
Input: NSeq Sequences X , not including the sequence

to be tested. Hyperparameter �, quantisation
parameter q, Nmeta meta iterations.

1 ✏ 0.1 # Meta learning rate
2 ✓Init rand() # Random initialisation
3 # Random parameters don’t work well for position

encoding
4 ✓Temp ([0.5, 0.25] , [0, 0]) # (⌦t,�t)
5 ✓Spat ([0.5, 0.25, 0.125] , [0, 0, 0]) # (⌦s,�s)
6 for Nmeta iterations do
7 ✓ 0 # Accumulate updates
8 for x 2 X do
9 i Random frame group

10 # En-/Decode frame group i

11 x1/2 BilinRescale(x[i], 0.5) # Resize
12 y1/2 CEnc(x1/2, q)
13 x̂1/2, zint CDec(y1/2)
14 # Train for 50 iterations, start with ✓Init
15 ✓ ✓ + Training(x[i], x̂1/2, zint, �, ✓Init)
16 end
17 ✓Init (1� ✏) ✓Init +

✏

NSeq
✓

18 end

Algorithm 5: Position Encoding.
Result: Encoded positions pEnc
Input: Sequence size: T frames of height H 0 and

width W
0, encoding parameters ⌦t,�t

(temporal) and ⌦s,�s (spatial)
1 # Note that this happens for the down sampled
2 # sequence, hence H

0 = H/2 and W
0 = W/2

3 pAbs zeros (size = [T, 3, H 0
,W

0])
4 # Generate normalised absolute positions with three
5 # channels for temporal and two spatial dimensions
6 pAbs [t, :, h, w]

⇥
t

T
,

h

H0 ,
w

W 0

⇤

7 pEnc ;
8 # Temporal encoding
9 foreach (!t,�t) 2 (⌦t,�t) do

10 psin sin (2⇡!tpAbs [:, 0] + �t)
11 pcos cos (2⇡!tpAbs [:, 0] + �t)
12 pEnc concat ([pEnc, psin, pcos] , dim = 1)
13 end
14 # Spatial encoding
15 foreach (!s,�s) 2 (⌦s,�s) do
16 # Vertical
17 psin sin (2⇡!spAbs [:, 1] + �s)
18 pcos cos (2⇡!spAbs [:, 1] + �s)
19 pEnc concat ([pEnc, psin, pcos] , dim = 1)
20 # Horizontal
21 psin sin (2⇡!spAbs [:, 2] + �s)
22 pcos cos (2⇡!spAbs [:, 2] + �s)
23 pEnc concat ([pEnc, psin, pcos] , dim = 1)
24 end

Table 12. Feature Network. Input are the internal features zint. Resolution refers to the relative resolution with respect to the original
sequence. The computational complexities are given as operations per pixel of the original size. F/W stands for inference at test time,
F/W (Trn) for the inference at training time (where BatchNorm is still present). BN is the BatchNorm update where µ and � need to be
computed. B/W refers to the backward computation, Grad. to the gradient computation. #W and #B are the numbers of weights and
biases, respectively (BN is fused with Conv). Bias is disabled for all layers in this network. Note that the first two layers do not need to
backpropagate because the input does not require a gradient.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B

1a BN 6 1 6 6 1/4⇥ 1/4 0.375 0.75 0 0
1b Conv 6 1 12 1 1/4⇥ 1/4 4.5 4.5 0 4.5 72 0
2a BN 12 1 12 12 1/4⇥ 1/4 0.75 1.5 0.75 0
2b Conv 12 3⇥ 3 12 12 1/4⇥ 1/4 6.75 6.75 6.75 6.75 108 0
3a BN 12 1 12 12 1/4⇥ 1/4 0.75 1.5 0.75 0
3b Conv 12 1 24 1 1/4⇥ 1/4 18 18 18 18 288 0
4 Unshuffle 24 None 6 1 1/2⇥ 1/2 0 0 0

⌃ 29.25 31.125 3.75 26.25 29.25 468 0

Table 13. Position Network. Input are the concatenated encoded internal features zEnc and the encoded positions pEnc. For the meaning of
the columns, please refer to Table 12. Sigmoid is assumed to take 7 floating point operations to compute.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B

1a BN 22 1 22 22 1/2⇥ 1/2 5.5 11 5.5 0
1b Conv 22 1 12 1 1/2⇥ 1/2 66 66 66 66 264 12
2a BN 12 1 12 12 1/2⇥ 1/2 3 6 3 0
2b Conv 12 3⇥ 3 12 12 1/2⇥ 1/2 27 27 27 27 108 12
3a BN 12 1 12 12 1/2⇥ 1/2 3 6 3 0
3b Conv 12 1 14 1 1/2⇥ 1/2 42 42 42 42 168 14
4a BN 14 1 14 14 1/2⇥ 1/2 3.5 7 3.5 0
4b Conv 14 3⇥ 3 14 12 1/2⇥ 1/2 36.75 36.75 36.75 36.75 147 14
5 Sigmoid 1/2⇥ 1/2 1.75 1.75 0.25 0

⌃ 173.5 188.5 30 187 171.75 687 52

Table 14. Denoiser Network. Input are the low resolution reconstruction x̂1/2 (concatenated before layers 5a and 7a). Layer 5c is the
attention weighting layer, which has the same complexity as BatchNorm. For the meaning of the columns, please refer to Table 12.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B

1a BN 3 1 3 3 1/2⇥ 1/2 0.75 1.5 0 0
1b Conv 3 1 14 1 1/2⇥ 1/2 10.5 10.5 0 10.5 42 14
2a BN 14 1 14 14 1/2⇥ 1/2 3.5 7 3.5 0
2b Conv 14 3⇥ 3 14 14 1/2⇥ 1/2 31.5 31.5 31.5 31.5 126 14
3a BN 14 1 14 14 1/2⇥ 1/2 0 3.5 7 3.5 0
3b Conv 14 1 14 1 1/2⇥ 1/2 49 49 49 49 196 14
4a BN 14 1 14 14 1/2⇥ 1/2 3.5 7 3.5 0
4b Conv 14 3⇥ 3 14 14 1/2⇥ 1/2 31.5 31.5 31.5 31.5 126 14
5a BN 17 1 17 17 1/2⇥ 1/2 4.25 8.5 0 0
5b Conv 17 1 14 1 1/2⇥ 1/2 59.5 59.5 59.5 59.5 238 14
5c Hadamard 14 1 14 14 1/2⇥ 1/2 3.5 3.5 0 0
6a BN 14 1 14 14 1/2⇥ 1/2 3.5 7 3.5 0
6b Conv 14 3⇥ 3 14 14 1/2⇥ 1/2 31.5 31.5 31.5 31.5 126 14
7a BN 17 1 17 17 1/2⇥ 1/2 4.25 8.5 4.25 0
7b Conv 17 1 14 1 1/2⇥ 1/2 59.5 59.5 59.5 59.5 238 14
8a BN 14 1 14 14 1/2⇥ 1/2 3.5 7 3.5 0
8b Conv 14 3⇥ 3 14 14 1/2⇥ 1/2 31.5 31.5 31.5 31.5 126 14
9a BN 14 1 14 14 1/2⇥ 1/2 3.5 7 3.5 0
9b Conv 14 1 6 1 1/2⇥ 1/2 21 21 21 21 84 0

⌃ 329 359.25 60.5 340.25 325.5 1302 112

Table 15. Network structure of [16], Y channel. Y channel is shuffled 2⇥ 2 ! 4 channels, hence all computations are performed at lower
resolution. Output is unshuffled into 2⇥ 2 again. U/V channels are appended to the input.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B

1a BN 6 1 6 6 1/2⇥ 1/2 1.5 3 0
1b Conv 6 1 20 1 1/2⇥ 1/2 30 30 30 120 20
2a BN 20 1 20 20 1/2⇥ 1/2 5 10 5 0
2b Conv 20 3⇥ 3 20 20 1/2⇥ 1/2 45 45 45 45 180 20
3a BN 20 1 20 20 1/2⇥ 1/2 5 10 5 0
3b Conv 20 1 20 1 1/2⇥ 1/2 100 100 100 100 400 20
4a BN 20 1 20 20 1/2⇥ 1/2 5 10 5 0
4b Conv 20 3⇥ 3 20 20 1/2⇥ 1/2 45 45 45 45 180 20
5a BN 20 1 20 20 1/2⇥ 1/2 5 10 5 0
5b Conv 20 1 20 1 1/2⇥ 1/2 100 100 100 100 400 20
6a BN 20 1 20 20 1/2⇥ 1/2 5 10 5 0
6c Conv 20 3⇥ 3 20 20 1/2⇥ 1/2 45 45 45 45 180 20
7a BN 20 1 20 20 1/2⇥ 1/2 3.5 7 3.5 0
7b Conv 20 1 4 1 1/2⇥ 1/2 20 20 20 20 80

⌃ 385 415 60 383.5 385 1540 120

Table 16. Network structure of [16], U/V channels. U/V channels are shuffled 2 ⇥ 2 ! 4 channels each, hence all computations are
performed at lower resolution. Output is unshuffled into 2⇥ 2 again.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B

1a BN 8 1 8 8 1/4⇥ 1/4 0.5 1 0 0
1b Conv 8 1 20 1 1/4⇥ 1/4 10 10 10 10 160 20
2a BN 20 1 20 20 1/4⇥ 1/4 1.25 2.5 1.25 0
2b Conv 20 3⇥ 3 20 20 1/4⇥ 1/4 11.25 11.25 11.25 11.25 180 20
3a BN 20 1 20 20 1/4⇥ 1/4 1.25 2.5 1.25 0
3b Conv 20 1 20 1 1/4⇥ 1/4 25 25 25 25 400 20
4a BN 20 1 20 20 1/4⇥ 1/4 1.25 2.5 1.25 0
4b Conv 20 3⇥ 3 20 20 1/4⇥ 1/4 11.25 11.25 11.25 11.25 180 20
5a BN 20 1 20 20 1/4⇥ 1/4 1.25 2.5 1.25 0
5b Conv 20 1 20 1 1/4⇥ 1/4 25 25 25 25 400 20
6a BN 20 1 20 20 1/4⇥ 1/4 1.25 2.5 1.25 0
6c Conv 20 3⇥ 3 20 20 1/4⇥ 1/4 11.25 11.25 11.25 11.25 180 20
7a BN 20 1 20 20 1/4⇥ 1/4 3.5 7 3.5 0
7b Conv 20 1 8 1 1/4⇥ 1/4 10 10 10 10 160

⌃ 103.75 114 20.5 103.5 103.75 1660 120

