Online-trained Upsampler for Deep Low Complexity Video
Compression
—Supplementary Material—

Jan P. Klopp
National Taiwan University
kloppjp@gmail.com

Shao-Yi Chien

Keng-Chi Liu
Taiwan Al Labs

calvin89029@gmail.com

Liang-Gee Chen

National Taiwan University

sychien@ntu.edu.tw

7. Additional Results
7.1. Convergence Ablation

While fast encoding is not critical in offline encoding
(e.g. as performed for video on demand), it can reduce re-
source usage and enable high latency online encoding (e.g.
non-responsive content like sports events). Fig. [I0] shows
coding gain as a function of the training iterations. The
graphs are annotated with the average use of a pixel as train-
ing data (at 100%, a pixel is seen once during training on
average). As all datasets receive the same optimisation, this
only depends on the frame size. For high resolutions, this
number drops far below 100% for 250 iterations. Never-
theless, the gains drop only moderately, especially for the
JVET A dataset. This observation indicates local general-
isation that at least holds for data in the temporal/spatial
vicinity of the training data. Hence even with few training
cycles, the coding gains are still significant.

7.2. Generalisation Ablation

Due to space constraints, the generalisation ablation for
128 frames did not fit in the main paper and can be found
in Fig.[T1] Like the results for 32 frames in the main paper,
one can observe that halving the number of frames available
for training does not severely impact the coding gain.

7.3. Gain Distribution over Rate and Distortion

If our method mainly improved sequences with a high
PSNR at a low data rate (i.e., low bandwidth demand), this
may show great improvements but not translate into band-
width reduction in practice. This issue depends on the dis-
tribution of sequences within a dataset. Figures

lgchen@ntu.edu.tw

— CTCA
-10.0 —— UVG FHD
— JVETA
-12.5 — Netflix
——586%
-15.0
8% v/ 1157%
S\J%MA\Z
-17.5 o 9%

-20.0 4%

BDRate Savings (%)

—22.5

200 400 600 800 1000 1200
Number of Iterations

Figure 10. BDRate savings over number of optimisation iterations
spent on one group of 32 pictures. Percentages indicate the amount
of training pixels over the total number of pixels in a group.

|
w
(=]

—— CTCA (128)
=7.5 —— UVG FHD (128)
~10.0 —— JVETA (128)

Netflix (128)

-12.5
-15.0
-17.5

BDRate Savings (%)

-20.0

16 32 64 128
Training Frames for 128-frame group

Figure 11. BDRate savings over the number of frames available
for training in each group of pictures. Frames are taken from the
beginning of the group. The group size is 128 frames.

and[I4]show the rate saving distribution over rate and PSNR
for the remaining three quality steps (the one for QP=22 is
in the main paper). Sequences in the bottom right corner
are likely to be more challenging to encode efficiently as
their PSNR is low while their rates are high. Their rates
are almost an order of magnitude above the majority on the
left-hand side. Similar to the graphic in the main paper, the
gains provided by our algorithm do not follow any obvious
distribution, and high bandwidth sequences do also achieve
high gains.

46 9 ® cTca
1 = JVET A
<’. ® JVET 360 6K
42 & ® ® JVET 360 8k
) o) @ Xiph UHD
) 40 A 4 R
g 38 o
wn
™~ 36 ® ®
u @ e

32 @ ’

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Rate (bit/pixel)

Figure 12. Distribution of rate savings over rate and distortion at
test QP 27 (QP 22 for the underlying low resolution codec). Sav-
ings are indicated by the radius of each blob.

“ e @® crca
42 ® JVET A
s © JVET 360 6K
40 ,\'\ Y ® JVET 360 8k
@ 18 \ @ xiph UHD
% 36 ®
Ay

@

W ow
o N
@

0.00 0.02 0.04 0.06 0.08 0.10
Rate (bit/pixel)

Figure 13. Distribution of rate savings over rate and distortion at
test QP 32 (QP 27 for the underlying low resolution codec). Sav-
ings are indicated by the radius of each blob.

7.4. Average Rate Shares

In addition to the results in the main paper, Table[§|shows
the average rate share of the network’s parameters for other
datasets. The dataset for which this data was presented in
the main paper (UVG FHD) contains more low bandwidth
sequences, not only due to the lower resolution but also
because the content is simpler (less motion and texture in
some sequences). The results presented here show that even
under low-quality conditions, our algorithm’s overhead re-

® @® crca
40 JVET A
‘. ® JVET 360 6K
38 % pY ® JVET 360 8k
pony 4 [.
@ 36 @ Xiph UHD
% .
34 .
wn
a []
. @ .
30 @)

28
0.00 0.01 0.02 0.03 0.04 0.05
Rate (bit/pixel)

Figure 14. Distribution of rate savings over rate and distortion at
test QP 37 (QP 32 for the underlying low resolution codec). Sav-
ings are indicated by the radius of each blob.

mains in the single-digit range, hardly exceeding 3% for
offline encoded sequences.

Table 8. Average rate share for different datasets, given for each
QP of the conventional codec that encodes the low resolution sig-
nal. The zero-latency data refers to a signalling interval of 16
frames.

Dataset Offline Zero Lat. 17 22 27 32
JVET A v 04% 0.7% 12% 2.2%
CTC A v 04% 08% 1.6% 3.1%
JVET 360 6K v 03% 05% 13% 22%
JVET 360 8K v 03% 05% 1.0% 2.0%
Xiph UHD v 02% 04% 09% 19%
JVET A v 05% 12% 23% 4.4%
CTC A v 04% 12% 3.0% 7.1%
7.5. LPIPS

Learned Perceptual Image Patch Similarity [46] has been
proposed as a learned metric for image fidelity. The metric
has been tuned according to feedback from human raters
viewing an original and a distorted image. Various kinds
of noise have been applied to the original image, among
them also JPEG compression. Table 9] shows the results
of testing LPIPS on the PSNR-trained models, i.e. without
tuning to the LPIPS metric, for three datasets. The results
show similar or even higher improvements than testing on
PSNR, indicating that our PSNR/MS-SSIM results are not
overfitting to the particular metric. A simple intuition is
that our method uses comparably few parameters to perform
upsampling. Hence overfitting to a metric may be less likely
than with more complex methods.

8. Quantisation

The number of bits reserved for weights (Q),,) and bias
(Qp) decreases with decreasing quality, i.e. increasing

Table 9. Bjontegaard Deltas for Rate and Distortion as measured
by PSNR and LPIPS over x265 with tune psnr. LPIPS measures
were obtained by optimising for PSNR (i.e. MSE). Negative rate
savings indicate that our method requires fewer bits of code to
deliver the same quality. All quality measures are taken in dB,
LPIPS was converted to log scale (decibel) as follows: LPIPSqg =
—10.01log (LPIPS)

PSNR LPIPS
ARate APSNR ARate ALPIPS
CTICA -13.6% +0.2954 -11.5% +0.0295
JVET A -184% +0.4813 -25.6% +0.4059
UVGFHD -163% +0.5156 -34.8% +0.6175

quantisation parameter q as listed in Tab.

Table 10. Quantisation bitdepth for weights and bias depending on
quantisation parameter q.

QPq Qw Qb
q <20 12 10
20<g¢g<25 11 9
25<q¢<30 10 8
30 < g 9 8

9. Pre-Training
Figure [I5] displays the concept of pre-training exploited

in our work in a simplified manner.

Initial Starting Point ., @ Target for Seq. |

S~ Y @ Target for Seq. 2
REPTILE Update
x @ Target for Seq. 3

®
Target for Seq. 4

Figure 15. Simplified schematic of the behaviour of NN parame-
ters in the pre-training process. By averaging the parameter up-
dates (coloured arrows) for several different sequences a better
initial starting point is reached (black dashed arrow). This new
starting point is then used for a different sequence (i.e. not se-
quences 1 to 4) to obtain an objective measurement of the impact
of REPTILE.

10. Algorithms

This section lists the algorithms we used to make repro-
duction easier and allow for a more detailed understanding.
Table [IT] lists the relative resolutions (with respect to the

Table 11. Resolutions relative to the resolution of the original se-
quence.

Variable Symbol Relative Resolution
Original sequence x 1x1
Bilinear downsampled seq. T/ /2 x 1/2
Reconstructed downs. seq. Ty, /2 x 1/2
Internal features Zint 1/4 x 1/4
Encoded int. feat. ZBnc /2 x 1/2
Absolute positions DAbs /2 x 1/2
Encoded positions DEnc /2 x 1/2
Attention weightings ZAtt /2 x 1/2
Reconstructed sequence z 1x1

original sequence) for most variables used throughout the
paper and the algorithm listings. Algorithm [1| contains the
main steps for the encoding and the decoding procedure on
a high level. Algorithm [2] describes in detail all steps re-
quired to compute the inference through the proposed net-
work architecture. Algorithm |3| contains the training and
quantisation procedures. The pre-training is listed in Algo-
rithm @] Lastly, Algorithm [5] describes the position encod-
ing process.

11. Network Architectures

In this section, we list the network architecture for fgea,

fros, and fpenoise in Tables [12] [13] and [14] respectively.
Also, Tables [15] and [16] describe the network architecture

used in the comparision with [[16].

Algorithm 2: Network Inference.

Algorithm 1: Encoding & Decoding Procedure.

Result: Network parameters ®, reconstruction X ,
Conventional code Y1/,

Input: Conventional codec C, quantisation parameter

q, hyperparameters v, image sequence x,
length of a frame group Npame

— Encode —

(SR # CNN parameters

Y1/, < () # Conventional code

if 0;,;; not yet available then

‘ Omic < PreTrain (...) # Algorithm@

end

foreach frame group i do

#4: indices to all frames in the frame group

1/, < BilinRescale(x[i],0.5) # Resize

Y1/5 < CEnc(21/5, q) # Conventional encoding

e 0 NN NN R W N

o
N =D

0, < Training(x[i], £1/5, Zint, ¥, Omic) #
Algorithm 3]

13 ©<—0Ul,

14 K/2 — K/z Uy,

15 end

16 # — Decode —

17 X + 0 # Reconstruction
18 foreach (0,,v:/,) € (©,Y1),) do

19 %175, Zint <= Cpec(¥1/,) # Rec. & Internal Signal

20 @ < Inference(1/,, Zint; 04) # Algorithm
21 X« XUz
22 end

o 0 NN N R W N -

T <
NS N R W N =D

%1/5, Zint <= Cpec(¥1/,) # Rec. & Internal Signal

W W N NN N N NN NN D =
- 8 R N AN NI R W N =S e ®

W W W W
N Rk W N

Result: Output Z of resolution H x W
Input: Network parameters 6, low resolution
reconstruction 1/,, internal signals 2jn,

Prepare Input: Upsample U,V to H/2 x W/2
i’in,Y — ill/z,Y
Zinu + BilinRescale (&1, 17, 2.0)
Zin,v ¢ BilinRescale (.%1/27\/, 2.0)
Prepare encoded positions (Algorithm
(Q¢, ®;) < Oremp # Temporal frequencies/phases
(Qg, @) Ospa # Spatial frequencies/phases
DEne < PosEnc (H/2, W /2,2, @, Qy, By)
Process internal features
ZEnc < fFeat (Zint; eFeat)
Prepare input for attention network
ZAtt fPos (concat (ZEnwanc; dlm:l) ; GPOS)
Compute the Denoiser’s output
Resolution here is H/2, W/2
OLast < 0 # Initialise last layer’s output
foreach Layer [do
Provide input (layers 1, 5, 7)
if | requires input then

‘ OLast <— concat (Ziy, Opas; dim = 1)
end
Attention weighting (layer 6’s input)
if [requires attention then

| OLast ¢ OLagt © sigmoid (zaq)
end
OLast < fDenoise,Layer:l (OLast; 9Denoise,Layer=l)

end

Split output (channels 1-4 - Y, 5= U,6 — V)
oy, oy, oy < split (oras; [1, 2, 3,4], [5], [6])

Unshuffle Y from the channel to spatial dimension
oy + depth2space(oy; [2,2])

Resolution of oy isnow: H x W

Compute the final output

Ty < BilinRescale (951/271/, 2.0) + oy

Zy « BilinRescale (&1, 17,2.0) + ou

Iy < BilinRescale (i1/27v, 2.0) + oy

Algorithm 3: Network Training.

Result: Quantised network parameters 6,
Input: Initial network parameters 6y, target z, low

resolution reconstruction &1 /25 internal signals

Zint, hyper parameters -y, loss function £

1 0; < Omie
2 for ., iterations do
3 Ty, jl/Q,ba Zint,h <

SamplePatches (.13, jjl/m Zint; VpatchSize s ’YbatchSize)
4 &y, < Inference (&1, 5, Zinib; 0¢) # A]gorithml%'
5 0; + Adam (% (zp, Tp) %“er)
6 end
7 # Quantise 6;
8 09 0
9 # Iterate over all layers in all networks
10 foreach layer [do

11 # Remove batch normalisation (before conv)
12 # Only filter index f and channel index ¢ shown
/ Wy e
13 w4
Wi efhe
14 b} —br—3". 7{76

15 # ., bits for weights, (), for bias (see Tab.

16 Qw> Qb <~ “YQuant
17 # Value ranges

18 | 71y 20wl 1
19 | rp 297t

20 # Weight quantisation per channel:
21 . + round (mri)
axy W, c|
q wh .
22 ’I,Uf7C < |_05+ TLJ
23 # Bias quantisation:
T
24 B < round (m)

5 | b1 (054 Y]

26 Oy < 0, U {5, 07}

27 foreach channel c do

28 ‘ 0y < 0,U {ac,wic}

29 end

30 end

31 # No quantisation necessary for position encoding
parameters

32 Oremp <+ (2, @)

33 Ospar < (s,)

Algorithm 4: Pre-training.

Result: Initial network parameters 6y for
quantisation parameter (quality) g
Input: Ns.q Sequences X, not including the sequence
to be tested. Hyperparameter -y, quantisation
parameter q, Ny, meta iterations.
1 e+ 0.1 # Meta learning rate
2 Oy < rand() # Random initialisation
3 # Random parameters don’t work well for position
encoding
4 Oremp < ([0.5,0.25], [0, 0]) #(Qy, Py)
5 Ospar < ([0.5,0.25,0.125],[0,0,0]) # (2, B5)
6 for N, iterations do

7 0 < 0 # Accumulate updates

8 for x € X do

9 1 <— Random frame group

10 # En-/Decode frame group ¢

u 1/, < BilinRescale(z[i],0.5) # Resize
12 Yijg < CEnc(xl/m q)

13 5%1/2; Zint <= Cpec (y1/2)

14 # Train for 50 iterations, start with Opy;
15 6 < 6 + Training(z[i], Z1/2, Zint, Y, Omnit)
16 end

17 elnit <~ (1 - 6) elnit + ﬁeqo

18 end

Algorithm 5: Position Encoding.

Result: Encoded positions pgpc

Input: Sequence size: T frames of height H’ and
width W', encoding parameters €2, ®,
(temporal) and €2, ®, (spatial)

Note that this happens for the down sampled

sequence, hence H' = H/2 and W' = W/2

Daps < zeros (size = [T, 3, H',W'])

Generate normalised absolute positions with three

channels for temporal and two spatial dimensions

DPAbs [ta:ah?w] «— [%7 %’ Vin/)’]

PEnc < @
Temporal encoding
foreach (wy, ¢;) € (4, ;) do
Psin 4 sin (27w paps [:, 0] + @)
Pcos < COS (27thpAbs [:7 O] + ¢t)
PEnc < concat ([pEnmpsinapcos] ,dim = 1)
end
Spatial encoding
foreach (w;, ¢5) € (25, P5) do
Vertical
Psin < Sin (27w pavs [, 1] + ¢s)
Peos < €08 (2w Paps [1, 1] + @)
PEne ¢ concat ([Penc; Psins Peos| , dim = 1)
Horizontal
Psin < sin (QstpAbs [:7 2] + ¢s)
Pcos < COS (27TwspAbs [:7 2} + ¢s)
PEnc ¢ concat ([pEnupsinapcos] ,dim = 1)
end

Table 12. Feature Network. Input are the internal features zin. Resolution refers to the relative resolution with respect to the original
sequence. The computational complexities are given as operations per pixel of the original size. F/W stands for inference at test time,
F/W (Trn) for the inference at training time (where BatchNorm is still present). BN is the BatchNorm update where 1 and o need to be
computed. B/W refers to the backward computation, Grad. to the gradient computation. #W and #B are the numbers of weights and
biases, respectively (BN is fused with Conv). Bias is disabled for all layers in this network. Note that the first two layers do not need to
backpropagate because the input does not require a gradient.

Layer Type Channels Kernel Filters Groups Resolution F/W FW (Trn) BN B/W Grad. #W #B
la BN 6 1 6 6 14 x 1/4 0.375 0.75 0 0

1b Conv 6 1 12 1 /4 x 1/4 4.5 4.5 0 45 72 0
2a BN 12 1 12 12 1/4 x 1/a 075 15 075 0

2b Conv 12 3x3 12 12 ax1/a 6.5 6.75 6.75 6.75 108 0
3a BN 12 1 12 12 /g x 1/4 075 15 0.5 0

3b Conv 12 1 24 1 1/a X 1/4 18 18 18 18 288 0
4 Unshuffle 24 None 6 1 /2 x 1/2 0 0 0

by 29.25 31.125 375 2625 29.25 468 0
Table 13. Position Network. Input are the concatenated encoded internal features zgn. and the encoded positions pgqc. For the meaning of
the columns, please refer to Table[12] Sigmoid is assumed to take 7 floating point operations to compute.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B
la BN 22 1 22 22 /2 x 1/2 55 11 5.5 0

1b Conv 22 1 12 1 /2 x 1/2 66 66 66 66 264 12
2a BN 12 1 12 12 /2 x 1/2 3 6 3 0

2b Conv 12 3x3 12 12 /3 x 1/3 27 27 27 27 108 12
3a BN 12 1 12 12 /2 x 1/3 3 6 3 0

3b Conv 12 1 14 1 /2 x 1/2 42 42 42 42 168 14
4a BN 14 1 14 14 /2 x 1/2 35 7 35 0

4b Conv 14 3x3 14 12 /2 x 1/2 36.75 36.75 36.75 3675 147 14
5 Sigmoid ax1/2 175 1.75 0.25 0

)y 173.5 188.5 30 187 171.75 687 52

Table 14. Denoiser Network. Input are the low resolution reconstruction £/, (concatenated before layers 5a and 7a). Layer Sc is the
attention weighting layer, which has the same complexity as BatchNorm. For the meaning of the columns, please refer to Table[12]

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B
la BN 3 1 3 3 /2 x 1/2 075 15 0 0
1b Conv 3 1 14 1 /2 x1/2 10.5 10.5 0 105 42 14
2a BN 14 1 14 14 /2 x 1/2 35 7 35 0
2b Conv 14 3x3 14 14 /a x /2 31.5 31.5 315 315 126 14
3a BN 14 1 14 14 /2 x 1/2 0 3.5 7 3.5 0
3b Conv 14 1 14 1 ax 12 49 49 49 49 196 14
4a BN 14 1 14 14 /2 x 1/2 35 7 3.5 0
4b Conv 14 3x3 14 14 /2 x1/2 31.5 31.5 315 315 126 14
Sa BN 17 1 17 17 /2 x 1/2 425 85 0 0
5b Conv 17 1 14 1 /a x 1/ 59.5 59.5 595 595 238 14
Sc Hadamard 14 1 14 14 ax1/2 35 3.5 0 0
6a BN 14 1 14 14 /2 x 1/2 3.5 7 3.5 0
6b Conv 14 3x3 14 14 /2 x1/2 31.5 31.5 315 315 126 14
Ta BN 17 1 17 17 /2 x 1/3 425 85 4.25 0
7b Conv 17 1 14 1 /a2 x 1/ 59.5 59.5 59.5 595 238 14
8a BN 14 1 14 14 /2 x 1/2 3.5 7 3.5 0
8b Conv 14 3x3 14 14 /a2 x1/2 31.5 31.5 315 315 126 14
9a BN 14 1 14 14 /2 x 1/2 35 7 3.5 0
9b Conv 14 1 6 1 ax1/a 21 21 21 21 84 0
by 329 359.25 60.5 340.25 3255 1302 112

Table 15. Network structure of [16], Y channel. Y channel is shuffled 2 x 2 — 4 channels, hence all computations are performed at lower
resolution. Output is unshuffled into 2 x 2 again. U/V channels are appended to the input.

Layer Type Channels Kernel Filters Groups Resolution F/W F/W (Trn) BN B/W Grad. #W #B

la. BN 6 1 6 6 12x 1/ 15 3 0

b Conv 6 1 20 1 axia 30 30 30 120 20
2a BN 20 1 20 20 12 x 1 5 10 5 0

2b Conv 20 3x3 20 20 laxla 45 45 45 45 180 20
32 BN 20 1 20 20 12 x 1 5 10 5 0

3b Conv 20 1 20 1 tax1i2 100 100 100 100 400 20
4a BN 20 1 20 20 2% 12 5 10 5 0

4 Conv 20 3x3 20 20 12xlf 45 45 45 45 180 20
5a BN 20 1 20 20 12x 12 5 10 5 0

Sb Conv 20 1 20 1 12x1/2 100 100 100 100 400 20
6a BN 20 1 20 20 1/2x 1/ 5 10 5 0

6c Conv 20 3x3 20 20 12x 1l 45 45 45 45 180 20
7a BN 20 1 20 20 /2% 12 35 7 35 0

76 Conv 20 1 4 1 1axla 20 20 20 20 80

by 385 415 60 3835 385 1540 120

Table 16. Network structure of [16], U/V channels. U/V channels are shuffled 2 x 2 — 4 channels each, hence all computations are
performed at lower resolution. Output is unshuffled into 2 x 2 again.

Layer Type Channels Kernel Filters Groups Resolution F/'W F/W(Tm) BN B/W Grad. #W #B
la BN 8 1 8 8 /4 x 1/4 0.5 1 0 0

1b Conv 8 1 20 1 /g X /4 10 10 10 10 160 20
2a BN 20 1 20 20 /g x /4 125 25 125 0

2b Conv 20 3 x3 20 20 g x /gy 1125 11.25 1125 1125 180 20
3a BN 20 1 20 20 /4 x 1/4 125 25 125 0

3b Conv 20 1 20 1 /4 x 1/4 25 25 25 25 400 20
4a BN 20 1 20 20 1/4 x 1/4 125 25 125 0

4b Conv 20 3x3 20 20 ax /g 1125 11.25 1125 1125 180 20
Sa BN 20 1 20 20 14 X 1/4 125 25 1.25 0

5b Conv 20 1 20 1 /4 x 1/4 25 25 25 25 400 20
6a BN 20 1 20 20 /4 x 1/4 125 25 1.25 0

6¢ Conv 20 3x3 20 20 ax1/a 11.25 11.25 1125 1125 180 20
Ta BN 20 1 20 20 1/4 x 1/4 35 7 35 0

7b Conv 20 1 8 1 /g x /4 10 10 10 10 160

by 103.75 114 20.5 103.5 103.75 1660 120

