
7. Supplementary
7.1. Hyperparameter Details

We use the shared hyperparameters in Tab. 4 for all ex-
periments involving RL training. We base our hyperparam-
eter choices on those used by [37] for PointGoal navigation
and adjust specific values as necessary to obtain efficient
training convergence on the VLN-CE task. Notably, we find
that the slack reward scalar (rslack) has a significant impact
on training – changing the default value of -0.01 to -0.05
leads to reduced reward variance during training, faster con-
vergence, and more efficient paths in both training and vali-
dation (a higher SPL). We suspect the vehicle of this change
is more cautious multi-step exploration of the state space,
which in moderation can be effective in a setting of dense
reward with a valid shortest-path-to-goal assumption.

The Discount Factor. The action space of the HPN model
is effectively a subset of the unconstrained WPN action
space. Despite HPN models obtaining higher success met-
rics than WPN models, WPN models learn different be-
haviors during training (e.g. making distance predictions
greater than 0.25m). We find this is a consequence of the
discounted reward. In small-scale WPN experiments, set-
ting the discount factor to 1 leads to HPN-style actions
whereas setting it to 0 (or values even higher, like 0.5) leads
to taking max-distance steps towards the goal. Our experi-
ments use γ = 0.99 to balance immediate gain (emphasiz-
ing larger steps) with long-term success.

7.2. Constructing a LoCoBot Motion Model

In Sec. 5.2, we estimate the time a LoCoBot robot run-
ning our navigation policy would take to execute trajecto-
ries in the real world. To support this metric (EET), we
determine a motion model from repeated empirical timings
of a physical LoCoBot. This model consists of a rotation
function that maps turn angle to time and a translation func-
tion that maps straight-line distance to time. Together, these
functions can estimate execution time for both our contin-
uous navigator and discrete navigator. We profile the base
controllers MoveBase, ILQR, and Proportional and
show their respective motion models in Fig. 4. We find that
MoveBase generally leads to faster execution time and use
it for all time estimates. We recognize there can be a time
vs. accuracy trade-off but for the purposes of EET we are
primarily interested in time.

To fit the rotation function, we record the time elapsed
between issuing the rotation command and the robot stop-
ping after turning an angle φ = 30◦, 60◦, ..., 180◦. We com-
pute an average time-to-turn by repeating this collection 5
times for each turn angle. We then fit a quadratic function,
yielding:

yrotate = 0.000358φ2 + 0.108φ+ 2.23. (16)

PPO Parameters
Parallel simulation environments 4
Rollout length (steps per environment) 16
DDPPO sync fraction 0.6
Number of PPO Epochs 2
Mini-batches per epoch 4
Optimizer Adam

Learning rate 2.0 × 10−4

Epsilon (ε) 1.0 × 10−5

Learning rate decay False
PPO-clip 0.2

clip decay False
Clip the value loss True
Generalized advantage estimation (GAE) True

Normalized True
γ 0.99
τ 0.95

Value loss coefficient (cv) 0.5
Offset regularization coefficient (cr) 0.1146
Entropy coefficient (ce) 0.1

Pano entropy coefficient (cp) 1.5
Offset entropy coefficient (co) 1.0
Distance entropy coefficient (cd) 1.0

Max gradient norm 0.2

Reward Parameters
Success (rsuccess) 2.5
Success distance 3.0m
slack reward (rslack) scalar -0.05

Table 4. Hyperparameters shared by all experiments.

for MoveBase. We repeat the process for the transla-
tion function, collecting 5 timings for each distance x =
0.25m, 0.5m, ..., 2.75m. We find a linear fit of:

ytranslate = 4.2x+ 0.362. (17)

Motion models for other robots can be computed in similar
fashion.

7.3. Adapting Success Weighted by Completion
Time (SCT)

Success weighted by Completion Time (SCT) [39] is an
evaluation metric that scales the agent’s episodic binary suc-
cess by the relative time taken to complete the trajectory.
Concretely, SCT is defined as:

SCT =
T

max(C, T )
(18)

where C is the agent’s estimated completion time and T is
the minimal time required for an oracle to reach the goal
as afforded by the agent’s dynamics. While originally de-
signed for unicycle-cart dynamics, we adapt SCT to our



experimental settings and report results for each model in
Tab. 1. To compute the completion time C, we use the es-
timated execution time (EET) based on our LoCoBot mo-
tion model. To determine the minimal time T , we adapt the
RRT*-Unicycle algorithm to reflect our point-turn dynam-
ics model, our agent’s action space, and multi-floor envi-
ronments. Specifically, we:

1. Redefine the cost to travel from one agent pose to an-
other in terms of our LoCoBot motion model,

2. Sample navigable points up to 4.0m away from exist-
ing graph nodes to reflect the action space of our least-
constrained WPN model, and

3. Extend the 2D algorithm to work in multi-floor envi-
ronments by a) swapping all instances of 2D Euclidean
distance with geodesic distance computed on a navi-
gation mesh, and b) sampling, projecting, and interpo-
lating random points from the space of all navigable
points.



Figure 4. Motion models of a profiled LoCoBot robot. We compute fits for the base controllers MoveBase, ILQR, and Proportional.
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WPN+CN
Episode Maps

Figure 5. Example episodes of our WPN+CN model in Val-Unseen broken down by the estimated average execution speed (TL/EET).
Successful episodes are shown to highlight differences in SPL. Estimated execution time (EET) is calculated from a rotation model and
translation model fit to a profiled LoCoBot robot. In each map, the agent starts at the blue square and attempts to navigate to the red square.
The agent heading icon denotes the agent’s position and heading at the time of each waypoint prediction. Gray regions represent navigable
space. These examples show that episodes consisting of short waypoint predictions and large turns lead to slower speed estimates, whereas
further waypoints with smaller turns lead to faster speed estimates.


