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1. Diagonal GAN Experiments
1.1. Qualitative Experiment Settting

For qualitative evaluation in the main text, our models
were trained using the images from 1024 x1024 CelebA-
HQ [6] and 512512 AFHQ [3].

Specifically, using full-resolution CelebA-HQ images,
we trained our model by accessing 20 million training sam-
ples. For efficient training with limited GPU capacity, we
started with batch size of 512 in the first 8 x8 resolution,
and reduced the batch size by half each time when we pro-
ceeded to a larger image size. With the aforementioned
training strategy, the overall training took about one month
using a single Tesla V100 GPU. For learning rate, we used
0.001 until accessing 12 million samples, then decreased
the learning rate to 0.0001. To test the effect of our diago-
nal attention (DAT) module in the qualitative evaluation, we
removed per-pixel noises at each layer. We increased the A
value of DS loss from 0.3 to 0.5 after accessing 12 million
samples for the training. We used the left and right flips for
data augmentation in all training procedures. For the case
of full resolution AFHQ images, we used the same training
settings as we did before for the CelebA-HQ dataset case,
except that we used the fixed value of A as 0.3 throughout
the training.

For further qualitative evaluations, we carried out ex-
periments with additional image data sets: Oxford Flowers
102 [9], Caltech-UCSD Birds (CUB2011) [11], and Stan-
ford Cars [8]. For the flower data set, we first extracted
the flower regions with center cropping. Then we resized
the cropped images to 512x512. For the bird dataset, we
extracted bird image areas using bounding box informa-
tion. Then we changed the size of the extracted images to
256x256. For the car dataset, we also extracted the car im-
age areas using bounding box information, then resized the
cropped images to 384x512. We also used the left-right
flips for data augmentation.

When training the models with flower and car data sets,
we continued the training models with up to 12 million sam-
ples. For the bird dataset, training was continued until we

accessed 10 million samples. The training settings used for
the AFHQ model training was also used for the flower, car,
and bird datasets.

To improve the perceptual quality, the images are gen-
erated by applying truncation trick similar to [2]. More
specifically, we found that best perceptual image quality
was obtained by truncating mapped style code in W up
to 0.7, whereas no truncation was used for W_.

1.1.1 Additional Qualitative Experiment Results

AFHQ results: Fig. 3 shows the results of direct atten-
tion map manipulation of our full-resolution AFHQ model.
Similar to our CelebA-HQ results, we could obtain the
faces with the desired direction by manipulating the 4x4
map, and control the mouth opening by changing the val-
ues around mouth in 8 x8 map. We also show the results of
the interpolation of the content codes of our AFHQ model
in Figs. 4, 5 and 6. When the content codes at all levels
are changed, the global spatial attributes are changed, and
when the 8 x8 maps are changed, the lower parts of the ar-
eas change. Quantitatively, our model trained with AFHQ
in full resolution achieved 10.79 in FID.
CelebA-HQ results: We also show more results of the con-
tent code interpolation with the model trained with full-
resolution CelebA-HQ in Figure 7 and 8. When the content
codes for all layers are changed, the global spatial attributes
are changed, and when the first 4 x4 codes are changed, face
direction changes. When the 8 x8 codes are changed, lower
parts of faces change.
Comparison with editing methods: To show the advan-
tages of our spatial attention map editing, we show the com-
parative experiments with the existing face editing method
in Figure 9. Among various editing methods, we com-
pared our model with GANspace [4], which controls the
generated images in unsupervised way by finding principal
components of style code space. For fair comparison, we
brought CelebA-HQ editing results from the original script
of GANspace.

Since GANspace changes the principal component in the



style code space, this often leads to the remaining entangle-
ment between content and style attributes. In contrast, more
detailed editing is possible since our model has disentangled
style and content code spaces.

Flower results: To test the versatility of our proposed
model, we trained our model using additional datasets.
Fig. 10 illustrates the generated images from the model
trained on flower dataset. When we change the content code
with fixed style codes, we can change the spatial informa-
tion such as flower shape, number, and location of flow-
ers. On the other hand, if we vary style codes with fixed
content codes, we can observe the changes of the global
style attributes including species, flower color and back-
ground. Fig. 11 also shows the results by changing the
content smoothly with interpolating the content codes. Our
flower model scored 46.43 in FID.

Birds results: Fig. 12 shows the generated images from the
model trained on birds dataset. Fig. 12 (b) shows samples
with varying style codes and the fixed content code. We can
observe the changes of the global style attributes including
species, feather colors and patterns. Fig. 12 (c) illustrate
samples generated with varying content codes and the fixed
style. We can observe that the content attributes including
location, rotation and global shapes change with different
content codes. Fig. 13 also shows the content interpola-
tion results, which shows that birds smoothly change the
head orientation. Our model on birds dataset scored 14.27
in FID.

Cars results: Figure 14(a) shows the sample images from
random content and style code. Then, Figure 14(b) shows
the samples with varying style codes and the fixed content
code. We can observe the changes of the global style at-
tributes including car type, colors and background. Samples
generated with varying content codes and the fixed style are
provided in Figure 14(c). We can observe that the content
attributes including rotation and global shapes change with
different content codes. In Fig. 15, we can see the effect of
content interpolation in terms of rotation angle. Our model
on car dataset scored 8.96 in FID.

1.2. Quantitative Experiments

For quantitative evaluation, we compared our method
with the baseline SNI model, SNI with DS loss, and the
original StyleGAN. In order to carry out extensive compara-
tive studies with various models, we trained the models with
the reduced resolution of 256 x 256 using 500,000 iterations
(total of ~4.7 million samples). We also used batch-size
scheduling for efficient training. It took four days for train-
ing each model with a single NVIDIA RTX2080Ti GPU.
For a fair comparison, we used the same non-saturating loss
with R; regularization in all the experiments. The same set-
tings are also used in all models for our ablation studies and
additional disentanglement studies.

For training the baseline SNI model and SNI with DS
loss, we implemented the models on PyTorch based on offi-
cial source code'. To follow the best settings in the original
paper [1], we used the input tensor of 88 resolution for
training the models. For the DS loss, A is set to 0.3, which
shows the best results.

In order to quantitatively evaluate the image quality of
the generated samples, we calculated the FID values [5].
For CelebA-HQ with 30,000 training images, we computed
the FID values with 50,000 generated samples. For the
AFHQ and other data sets with relatively fewer training im-
ages, we calculated the FID values with 20,000 generated
samples.

To calculate the total PPL of the W space, we follow the
same calculation proposed in StyleGAN[7]. If we sample
the two style codes s1,s2 € W, and two contents codes
c1,co € W,, the PPL score is calculated as

PPLyy
:éE [d(G(tsy + (1 —t)sa,ter + (1 —t)ea)),
G(t+e)s1+(1—t—e€)sa, (t+e)er + (1 —t —€)ea))]

where ¢ is a uniformly sampled between [0, 1], and G(s, ¢)
is the generator output with respect to the style code s and
content code ¢, respectively, and d(X,Y") denotes the per-
ceptual distance between two images X and Y. We use
e = 10~* for all the calculations and report the average
values that are computed using 10,000 generated samples.

For calculation of PPL for W, we use fixed content code
crie € W, and paired style codes s1, 52 € W:

PPLyy.
1

=SEd(G(ts1 + (1 = 1)s2, cria)),
G((t+€)s1 4+ (1 —t — €)sa, cri)]

To calculate PPLyy,, we use fixed style code s, € W and
sampled content codes c1,co € We:

PPLyy.
1

:€72E [d(G(Sfim,tcl + (]. - t)02)7
G(sfiz, (t+€)c1 + (1 —t —€)ca)]

For the computation of PPL for Wy (resp. W,), for each
fixed code, the content codes (resp. style codes) are sam-
pled fifty times, and the average value was calculated by
repeating this 200 times. Therefore, the final PPL value is
calculated using 10,000 samples.

1.3. Ablation studies

In our ablation study, we compared the quantitative per-
formance of models trained with different settings. In all

Uhttps://github.com/yalharbi/StructuredNoiseInjection



CelebA-HQ AFHQ
FID W PPL | FID W PPL

0.2 11.65 4983 | 13.27  70.78
0.3 1090 48.12 | 11.73  63.44
04 11.69 6244 | 1332 8041
0.5 11.51  68.75 | 13.87 73.12

Varying A

Table 1: Quantitative results of ablation study. We investi-
gate the effect of \ value in the diversity-sensitive loss.

CelebA-HQ AFHQ
FID W PPL | FID W PPL

2xMLP-256 1451 5399 | 16.85 70.02
CNN-256 11.18  83.37 | 1428 91.88
single MLP-32 | 11.74  60.87 | 13.26 118.21
single MLP-64 | 10.66 6198 | 12.50  87.89
single MLP-256 | 10.90 48.12 | 11.73  63.44

DAT network

Table 2: Quantitative results of ablation study. We compare
different attention mapping networks and the maximum res-
olution for the DAT layers.

of the experiments, we used models trained with per-pixel
noises.

In order to validate the choice of the value of A for the
diversity-sensitive loss, we first show the results of vari-
ous models that were trained with different A\. In Table 1,
the models trained with A = 0.3 show the best perfor-
mance in the disentanglement capability, exhibiting the low-
est PPL scores; furthermore, they showed the best image
quality with the lowest FID. The models trained with lower
or higher )\ values show degraded disentanglement perfor-
mance. The results show that we can achieve the most bal-
anced content-style control with both codes when we set
A=0.3.

We also investigated the effect of different network ar-
chitectures for the attention mapping, and show the results
in Table 2. To ensure stability in training, we use atten-
tion mapping with a single layer MLP followed by a sig-
moid applied to layers with a resolution of up to 256 x 256.
To verify our choice of mapping network architecture, we
implemented two additional networks for ablation study:
2xMLP-256 and CNN-256. Here, 2xMLP-256 represents
a model which has attention mapping of 2-layer MLP in-
stead of a single MLP. The model CNN-256 uses CNN
layer-wise upsampling network to generate the diagonal at-
tention. In all the experiments, we fixed A\ = 0.3 and used
mapping network up to 256 x 256 layers.

Table 2 shows that when using 2-layer MLP, we can
obtain a well-disentangled model with relatively low PPL
scores, but it still cannot achieve the best performance. In
case of using CNN as an attention network, the disentan-

Dataset Methods ‘ Per-pixel Noise [ wlo Per-pixel Noise

| content style all | content style all
SNI[1] 0.338 0499 0.532 | 0.348 0.496 0.534
CelebA-HQ | SNI+DS | 0.392 0472 0.531 0.378 0.489 0.535
Ours 0411 0469 0532 | 0413 0472 0533
SNI[1] 0.344 0.588 0.605 | 0411 0.583 0.610
AFHQ SNI+DS | 0399 0585 0.607 | 0.407 0.589 0.608
Ours 0412  0.582 0.607 | 0.443 0.578 0.608

Table 3: Comparison of LPIPS scores of models trained
using CelebA-HQ and AFHQ datasets at 256 x256 resolu-
tion. Our model has more balanced content-style control
than that of the baseline models.

glement scores are severely degraded, which may be due
to the imbalance between the simple AdaIN network and
CNN-based attention mapping networks.

Then, we carried out comparative study by changing the
maximum resolution of the diagonal attention (DAT) layer.
In Table 2, the use of DAT up to 32x32 (single MLP-32)
and 64 x64 (single MLP-64) have relatively high PPL val-
ues, suggesting that DAT layers at the lower levels only re-
sult in a limited expressiveness for the various content in-
formation. The disentanglement quality is particularly im-
paired in the models trained with AFHQ data set. We sus-
pect that limited capacity in content control makes it more
difficult to cover the variations of images in AFHQ that are
more diverse than those in CelebA-HQ. Therefore, we use
DAT layers up to 256x256 resolution (single MLP-256),
which is our default model.

In evaluating image quality in terms of FID scores, our
default model showed better performance than most of
baseline settings except for single MLLP-64. However, in the
case of single MLP-64, the disentanglement performance is
relatively poor. Therefore, we can obtain best result when
using single MLP-256.

1.4. Disentanglement Experiments

To further quantify the disentanglement performance, we
additionally measure the content and style diversity in the
image generation. As a measurement of image diversity,
we use Learned Perceptual Image Patch Similarity (LPIPS)
[12]. Since our model and the baseline SNI have two in-
dependent content and style codes, we can compare their
diversity of style and content. To measure the diversity
score of both codes, we compute the average value of LPIPS
of 40,000 images sampled with arbitrary content and style
codes. On the other hand, to measure the style and con-
tent diversity separately, we calculate the LPIPS of 40 im-
ages sampled by varying one code with another code fixed,
which is repeated for 10,000 times to calculate the aver-
aged LPIPS. This makes the the total number of images for
LPIPS calculation equal to 40,000 for both cases.

Table 3 is the result of LPIPS scores. When we compare



the LPIPS by varying both content and style codes, both
SNI and our model show similar diversity in the generated
images. However, when looking at the diversity of style and
content separately, the baseline SNI shows that the diversity
of content is much lower than that of the style. On the other
hand, our model has more balanced diversity in style and
content. With SNI trained with DS loss on content code, the
model shows slightly better diversity in content code than
that of the baseline SNI. However, the model still shows
lower content diversity than our model as it is not able to
overcome the capacity limit of content control with input
tensor.

To support the above quantitative comparison in terms
of LPIPS scores, we also qualitatively compared the effect
of various content controlling methods: per-pixel noises
of StyleGAN, input tensor of SNI and our DAT mapping.
Since the code spaces of the baseline models are slightly
different, we compare the images generated from the mean
style code by varying the content codes. In Figure 16, we
can see that StyleGAN with different per-pixel noises only
results in the minor spatial variations such as curls of hair
and fur. As for the baseline SNI, it can only change the
simple geometrical information such as rotation. For SNI
trained with DS loss, we can see that the generated sam-
ples have more diversity than basic SNI, but still the varia-
tion is limited to geometry similar to basic SNI. In contrast,
our model allows more diverse changes on spatial informa-
tion including geometry, hairstyle (fur pattern), facial ex-
pression, etc., by controlling specific DAT layers.

2. Diagonal GAN Inversion
2.1. Methods

As discussed in the main text, our diagonal GAN can be
easily incorporated with GAN inversion. Specifically, our
inversion model consists of two steps as shown in Figure 1.
The details of each step are as follows.

Step 1: The first step is to train our proposed Diagonal
GAN. For domain-aware (i.e females, males) image gener-
ation, we train a multi-domain Diagonal GAN in which the
style mapping network S M can sample multiple style codes
with a multi-head structure. Specifically, we use two types
of style codes that represent males and females domains
(see Fig. 1(a)). On the other hand, the content mapping
generates a unified content code ¢ = C'M (z.) that can be
used for both style domains. We used mapped style codes
s € W, which have the dimension of 512, and mapped con-
tent codes ¢ € W with the dimension of 512. Our discrim-
inator D also has a multi-head structure to simultaneously
enable realistic generation and domain classification.

Step 2: After pre-training our generator network (Fig. 1(a)),
we invert the real images into latent spaces with our in-
version network in Step 2 (Figs. 1(b)(c)). In this step, we

Z.» CM

(b)Latent constraint

Xreal
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R/F

% RF
Male

(c) Real image encoding

Figure 1: Detailed training procedure for GAN inversion
task. Step 1: Training our Diagonal GAN with multi-
domain style codes. Step 2: With pre-trained Diagonal
GAN in Step 1, we introduce style encoder S E and content
encoder C'E to find style and content codes for real input
images. The networks with gray color are fixed, and with
blue color are trainable. Red dotted lines indicate supervi-
sion losses.

use the modified version of state-of-the-art GAN inversion
method IDinvert [13]. To encode the real images into style
and content code spaces, we introduced the style encoder
SE and the content encoder C'E networks. Similar to the
style mapping in Step 1, our style encoder has a multi-head
structure after the last convolution layer.

The main idea of IDInvert is that when encoding a real
image into a latent space, realistic reconstruction is possi-
ble only when the encoded latent code is constrained within
the learned latent space. To achieve this goal, as shown in
Fig. 1(b), we first sampled the random style code s with ran-
dom domain label y, and the random content code ¢ using



the pre-trained mapping networks SM and C'M, and gen-
erated a fake image X tq1.. Then by putting the generated
X take into the encoders, we can obtain the encoded style
and content codes sy and cy, respectively. Then, our loss
for latent codes is given by

Llatent: ||5_8f|‘2+‘|c_cf||2 (1)

which reduces the mean-squared error (MSE) between the
encoded codes and the learned codes so that our encoder
networks can generate the codes within the learned latent
spaces.

Additionally, in Fig. 1(c), we put the real image X,eq;
with the corresponding domain label g into the style and
content encoders to get the content code ¢, and style code
Se, respectively. Then, the codes ¢, and s, are used in DAT
and AdalN layers, respectively, of the pre-trained generator
to obtain the reconstructed image X,... The goal of this
step is to make X, as close as possible to X,..,;. For real-
istic reconstruction, we reduce the distance between X,
and X,.. by using a MSE loss, a LPIPS [12] loss that re-
duces the perceptual distance, and an adversarial loss using
a new discriminator D which also has a multi-head struc-
ture. For adversarial loss, we used the same loss function
as StyleGAN [7], which is composed of the non-saturating
Softplus, f(t) = softplus(t) = log(1 + exp(t)), with Ry
regularization.

Accordingly, our total loss function for the content and
style encoder is given by

LE :HXreal - XrecHZ + LPIPS(XTealaXrec)
+ /\latLlatent + )\advf(_ng(Xrec))

where A\jq¢ and A4, are weight parameters. On the other
hand, the loss for the discriminator is

Lp :f(DQ(XTeC)) + f(*Dz)(Xreal))
+ 2E[1V D5 (Xrear) I3

where Dj(-) denotes the output of the discriminator D cor-
responding to the domain gy, v is a weight parameter for
gradient R; regularization (the last term in Lp).

Inference time Latent-Regularized Optimization: Addi-
tionally, we try to find better latent codes at the test time
by additionally optimizing the latent code for better recon-
struction. In this process, we use the latent optimization
method proposed by IDinvert [13]. Specifically, as an ini-
tialization for the style and content codes s and ¢, respec-
tively, we use codes s, and ¢, from pre-trained encoders in
Step 2. In addition to reducing the distance between the in-
put and reconstruction, we include latent regularization loss
to make the latent vectors s,c lie within the learned space of
the encoders and the generator. The resulting loss function

for optimization is:

Lcode(sac) = ||X7'eal - G(S,C)HQ + LPIPS(Xreal; G(S,C))

+ )\regHS - SE:O(G(S7C))H2
+ /\Teg”C - CE(G(Sa C))||2
(2)

where G(s, c¢) denotes the generator output with style and
content codes s and c, respectively, SEj refers to the style
encoder on the domain ¢, and C'E is the content encoder.

2.2. Method Details

In GAN inversion experiments, we used 256 X256 reso-
lution CelebA-HQ dataset. Total of 30,000 images, 28,000
are used as a training set, and 2,000 are used as a test set.
The test set consists of 1000 male and 1000 female face im-
ages.

When training our Diagonal GAN network in Step 1, we
trained the model until we access a total of 10 million train-
ing samples, which took about a week with a single RTX-
2080Ti GPU. Except for the maximum resolution, other
training settings are the same as our full-resolution CelebA-
HQ experiments.

Our style encoder model is a CNN with multi-head fully-
connected layers, which has the same structure as the dis-
criminator. The content encoder has the same architecture,
except that it has a single-head structure. In Step 2 training,
we trained the model with the batch size of 2 for 200,000
iterations. We used Adam optimizer, initially using a learn-
ing rate of 0.001, and then decreased the learning rate to
0.0001 after 100,000 iterations. For weight parameters, we
set Ajgt = 1, Aggo = 0.1. This took 2 days with a single
NVIDIA RTX2080Ti GPU.

For our inference time latent-regularized optimization
using (2), both style and content latent codes were opti-
mized using 100 iterations per a single input image. We
used Adam optimizer with learning rate of 0.01, and set the
loss weights as A,..q = 2. Optimization process took 4 sec-
onds per each input image.

2.3. Experiment Details

In order to show the superior disentanglement perfor-
mance of our model, we compared our method with state-
of-the-art diverse image translation model, StarGANv2 [3].
Note that our inverted model can control both content and
style spaces using DAT and AdalN layers, whereas Star-
GANV2 can only convert styles of input images due to the
exclusive use of AdalN layers. For a fair comparison, we
used the pre-trained StarGANV2 that can be downloaded
from the official GitHub repository .

Zhttps://github.com/clovaai/stargan-v2



For quantitative evaluation, we measured the quality in
terms of FID and diversity through LPIPS. Since Star-
GANV2 can only convert the style of the images, we only
consider the style conversion by two methods for this quan-
titative comparison. We consider both image translation
scenario: 1) latent-based image translation, which converts
the style of input image to a random style by sampling the
style codes, and 2) reference-based image translation, in
which we convert the style of inputs to that of the reference
images. At this time, we measured the performance by con-
verting a single image of one domain into 10 different target
domain images. In our GAN inversion, the experiment was
conducted by varying the style codes while using the same
content code of the input image. As mentioned before, this
is to compare the image quality during style translation, as
StarGANV2 is only for the style translation. Since the test
set contains 1,000 images for each domain (female, male)
and 10 target styles are used for each image, 10,000 synthe-
sized images can be obtained. Furthermore, we consider
the domain conversion scenario (i.e. females & males),
which doubles the number of synthesized images. There-
fore, for each latent and reference based experiment, we
measured metrics on 20,000 generated images. For more
details, please refer to the original StarGANv2 paper [3], as
we use the same evaluation process.

In all the experiments, we used style and content codes
obtained using inference time latent-regularized optimiza-
tion process, except for the qualitative experiment of
reference-based style synthesis, where style codes without
latent-regularized optimization still provide better percep-
tual quality.

2.4. Inversion Experimental Results
2.4.1 Multi-domain Diagonal GAN Inversion

Auto-encoder Reconstruction Results: Our inversion re-
sults on multi-domain Diagonal GAN showed satisfactory
reconstruction performance by extending the state-of-the-
art inversion model. To evaluate the reconstruction perfor-
mance, we measured the distance between input and the re-
constructed image with MSE and LPIPS. When we recon-
struct the images without inference time latent-regularized
optimization, we could obtain MSE of 0.095 and LPIPS of
0.246. Furthermore, with additional latent-regularized opti-
mization process, the model showed improved performance
with MSE of 0.042 and LPIPS of 0.155. The results con-
firmed that our model shows good reconstruction perfor-
mance, and more accurate reconstruction is possible when
latent-regularized optimization is additionally used.

Qualitative comparison: In the main script, we have al-
ready compared the performance of our model and baseline
StarGANvV2 to show that our model outperforms the gen-
eration quality. Here, we provide more extensive qualita-
tive comparison results to highlight the advantages of our

model.

Figure 17 shows the generated samples synthesized from
input image to follow the styles of reference images. Al-
though StarGANv2 shows good performance in style syn-
thesis from typical images (see Fig. 17(a)), it is still a con-
ventional image translation model that uses spatial informa-
tion of the image as it is. Therefore, as shown in Fig. 17(b),
when the content information of the input is complicated
or rare, we can observe that the generation performance is
often severely degraded. In contrast, our model finds the
content code that can best express the input content in the
pre-trained space, so that it can generate realistic images
even with complex or rare input contents (see Fig. 17(b)).
Figs. 18(a)(b) show the result of converting the input image
to follow random styles. Again, our model could generate
more realistic images even if the input content is complex
(see (see Fig. 18(b)).

To clearly show the strength of our model, in Figure
19, we show the results from our image translation results
with content manipulation through the content code inter-
polation. As explained before, StarGANvV2 can change the
contents only by using different input images similar to
Figs. 19(a)(c). In contrast, as our model can control the
content code space, Figure 19(b) shows that the content
information of the translated images can change smoothly
with interpolating the content codes. Furthermore, Figure
20 shows the image translation experiment by changing the
hierarchical content code in addition to style synthesis. Un-
like StarGANV2, which can only change the style of the in-
put, we can further change the the specific content attributes
such as: face geometry by changing the 4 x4 content codes,
the hair shape by changing the 8 x8 codes, and the mouth
expression by changing the 16x 16 codes.

The results clearly show that our model is capable of
flexible content control in addition to the style control,
which is not possible with the existing image translation
models such as StarGANv2.

2.4.2 GAN Inversion comparison results

Results on another inversion method: We also show that
our proposed model can be easily integrated to various
GAN inversion methods by incorporating our DAT in an-
other state-of-the-art GAN inversion method, pSp [10]. In
contrast to the original pSp which uses single encoder that
predicts multiple style codes, we trained two pSp encoders
that predict style and content codes, respectively. We also
used the identity matching loss proposed by pSp. In Table
4 and Fig 2, again we could obtain good reconstruction re-
sults similar to those of IDInvert. The results confirm that
our model can be easily integrated to various GAN inver-
sion frameworks.

Comparison with baselines: To further verify the inver-



Figure 2: Qualitative comparison of various inversion ex-
periments.

Methods MSE| LPIPS]
StyleGAN(IDInvert) | 0.120 0.314
SNI(IDInvert) 0.095 0.286
Ours(pSp) 0.074 0.267
Ours(IDInvert) 0.081 0.263

Table 4: GAN inversion comparison in terms of MSE and
LPIPS scores between input and reconstructed images. All
models are trained on 28,000 CelebA-HQ training images.
The scores are calculated on 2,000 images in CelebA-HQ
validation set. Compared to other baseline models, inver-
sion results on our proposed model shows the best perfor-
mance.

sion performance of our proposed model, we show compar-
ison experiment on inverting various baseline models. For
fair comparison, we applied IDInvert to the models trained
on 256 %256 CelebA-HQ. In Table 4 and Fig 2, our inverted
model can obtain the most accurate reconstructions by find-
ing appropriate style and content codes. In case of baseline
models of SNI and StyleGAN, the performance is degraded
because the encoder failed to find right codes due to the
highly entangled code spaces. The results show that our
model outperforms the baseline models due to the further
disentangled code spaces.
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Figure 3: Direct attention map manipulation. By controlling the specific areas of attention, we can selectively change the
animal facial attributes. Results from changing (a) the first 4x4 attention map, (b) the 2nd 8x 8§ attention map. We can

manipulate the face direction with changing first 4x4 map, and change mouth expression with 2nd 8 x8 map. The yellow
boxes represent the edited areas.
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(b) 8x8 layer content code interpolation

Figure 4: AFHQ results for content code interpolation. (a) Results with interpolating content codes of all layers. (b) Interpo-
lating 8 8 layer content codes.
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Figure 5: Examples from interpolated content codes. The images of each row are sampled from the same content code.
(Left) Samples by varying content codes across all layers. We can observe that the global attributes such as rotation, and
shape change gradually. (Right) Samples by varying 88 attention maps. We can observe that this layer mainly contributes
on the lower part of faces (i.e mouth).
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Figure 6: Examples from interpolated content codes. All images are samples by varying the attention maps across all layers.
All samples show that we can control content information independently from the styles.
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Figure 7: Examples from interpolated content codes. The images at each row are sampled from the same content code. (Left)
Samples by varying the content codes across entire layers. We can observe that the global attributes including rotation, facial
expression, and identity changes gradually. (Right) Samples with changing 8 x8 resolution content codes. We can see the
lower part of faces (i.e mouth) changes.
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Figure 8: Examples from interpolated content codes. The images of each row are sampled from same content code. (Left)
samples with changing content code across all layers. (Right) Samples by varying the first 4 x4 resolution content code. We
can see the global geometry (i.e rotation) changes.

(a) Smile

GANspace (15" PC, layer 3) Ou %8 DAT , mouth area)
(b) Gender

GANspace (2™ PC, layer 0-1) Ours (4%x4 AdalN style)

Figure 9: Comparison between our model and GANspace. (a) In controlling the mouth expression of the generated face,
GANspace changes not only the targeted mouth part, but also other attributes such as nose and ears. In our method, only
the mouth area can be controlled without changing other attributes by editing the attention map of the mouth area. (b) In
the gender translation experiment which requires changing the overall style of the face, GANspace changes the direction or
shape of the face which are irrelevant to the target attribute. However, since content and style are separated in our model,
changing only the style code of low resolution can change the gender while minimizing the change of other attributes. The
results show that our model is capable of more detailed attribute editing than the existing editing method.



Figure 10: Generated 512x512 images by our method trained using flower data set. (a) A source image generated from
arbitrary style and content code. (b) Samples with varying style codes and the fixed content code. We can observe the
changes of the global style attributes including species, flower color and background. (c) Samples generated with varying
content codes and the fixed style. We can observe that the content attributes including location, global shape, and the number
of flowers change with different content codes. (d) Samples generated with both varying content and style codes.
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Figure 11: Examples from interpolated content codes. The images of each row are sampled from the same content code. All
images are samples with changing content codes across all layers.



Figure 12: Generated 256 <256 images by our method trained using bird data set. (a) A source image generated from arbitrary
style and content code. (b) Samples with varying style codes and the fixed content code. We can observe the changes of the
global style attributes including species, feather colors and patterns. (c) Samples generated with varying content codes and
the fixed style. We can observe that the content attributes including location, rotation and global shapes change with different
content codes. (d) Samples generated with both varying content and style codes.
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Figure 13: Examples from interpolated content codes. The images of each row are sampled from the same content code. All
images are samples with changing content codes across all layers.



Figure 14: Generated 384 x512 images by our method trained using car data set. (a) A source image generated from arbitrary
style and content code. (b) Samples with varying style codes and the fixed content code. We can observe the changes of
the global style attributes including car type, colors and background. (c) Samples generated with varying content codes and
the fixed style. We can observe that the content attributes including rotation and global shapes change with different content
codes. (d) Samples generated with both varying content and style codes.
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Figure 15: Examples from interpolated content codes. The images of each row are sampled from the same content code. All
images are samples with changing content codes across all layers.
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Figure 16: Comparison results of various content controlling methods. Sampled 256 x256 images from (a) StyleGAN with
varying per-pixel noises, varying content codes of (b) SNI, (c¢) SNI trained with DS loss, and (d) our model.



reference StarGANv2

Figure 17: Comparison results of reference-based synthesis. (a) Results from typical input images. Both StarGANv2 and
ours can generate realistic images with the styles of reference images. (b) Results from rare cases of input images. Our
inversion model can successfully synthesize realistic images, whereas StarGANv?2 fails.
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Figure 18: Comparison results of latent-based synthesis. (a) Results from typical input images. Both StarGANv2 and Ours
can generate realistic images with different styles. (b) Results from rare cases of input images. Our inversion model can
successfully synthesize realistic images, whereas StarGANV?2 fails.
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Figure 19: Results of content code interpolation from our model. (a,c) Similar to StarGANv2, our model can randomly
change the style of the input images. (b) When interpolating the input content code between those of (a) and (c), we can
obtain smooth content variation between two images. This variation is impossible in the existing image translation model
such as StarGANV2.
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Figure 20: Comparison between StarGANv2 and our model. (a) Input image and (b) style reference images. Similar to
StarGANV2 in (c), our model can synthesize the style using the style reference as shown in the leftmost column of (d).
Furthermore, by changing the content codes in a hierarchical manner through DAT layers, the corresponding content attributes
are selectively synthesized as shown in from the second to the fourth columns in (d). This fine content control is not possible

using StarGANV2.



