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1. Additional View Synthesis Results

1.1. Our Qualitative Results

Figure 1, 2 and 3 provide additional novel view synthesis
results. Our method is able to synthesize high quality view
with correct camera transformation.
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Figure 1: Novel View Synthesis: Our method is able to generate
accurate results that correspond to the ground truths. Our method
works for both camera translation (row 1-2) and rotation (row 3-4).
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Figure 2: Novel View Synthesis (continued)
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Figure 3: Novel View Synthesis (continued)



1.2. Qualitative Comparison with Previous Meth-
ods

Figure 4 and 5 provide additional comparison with previ-
ous methods. In Fig. 6, we show additional detailed compar-

ison with the strong competitor, Synsin [1]. Our method is
able to generate more clear and accurate results, even though
our method is trained without any camera supervision.
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Figure 4: Novel view synthesis results compared with previous methods: Other methods show systematic errors either in rendering or
pose estimation. Our method is able to outperform other unsupervised methods visually by large margin. (P) indicates methods supervised
by true camera transformations.
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Figure 5: Novel view synthesis results compared with previous methods (continued)

2. Network structures

In Table 1,2,3, we give additional information about
the network strucutres of the subcomponents of our model.
There is a total of 29M trainable parameters, mainly in the
Resnet-50 feature extractor.

3. Details of baselines

In this section, we describe the baselines we used to
compare our method with. Specifically, we compared
with Dosovitsky et al. [2], Appearance Flow [3], Stere-
oMag [4], Synsin [1], SFMLearner [5], Indoor SFM-
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Figure 6: Novel view synthesis results compared with [1] (de-
tails) Our method synthesizes novel views with less artifacts and
noises. See Fig. 4 for uncropped full results of our model and [1].

Learner [6], GQN [7], GRNN [8] and SSV [9].
Dosovitsky et al. This method infers a novel view of

a given input with a neural network. The model feeds an
image and the desired viewpoint into the network, which
directly estimates an image corresponding to the given view.
This method was only tested on images of a single object,
which are considerably easier than the real scene data we
used.

Appearance Flow. Appearance flow predicts a flow field
that warps the original image into a novel view. This flow
field is computed from a ConvNet which takes the origi-
nal image and the viewpoint transformation as input. This
method is shown to work very well on synthetic object
datasets (e.g. ShapeNet [10]). It has also shown that the
performance on real-world scenes surpasses direct pixel pre-
diction [11].

SynSin. Synsin is a novel view synthesis algorithm that
aims to synthesize new viewpoints of a given single image.
The algorithm makes use of an intermediate representation:
a point cloud where each point is a feature vector. Taking a
single image as input, Synsin first computes a depth map and
a set of 2D feature maps. The 2D feature maps are projected
back into 3D points with the depth map. Next, a camera
transformation is given and the point cloud is rendered with
the new camera pose. There are two major differences in
the high-level philosophy between our model and Synsin.
First, we do not require true camera transformation during
training time. This means that Video Autoencoder works on
raw videos and Synsin can only be trained on datasets with
camera pose obtained from sensors or precomputed from
SfM. Second, Synsin leverages explicit 3D representation
(i.e. the depth map) whereas the Video Autoencoder does
not. As shown in the paper, explicit 3D representation could
fail in out-of-domain data whereas our method generalizes
better into unseen images.

StereoMag. StereoMag constructs multiplane images
(MPIs) from two input views. The multiplane images repre-
sent a 3D structure as a set of fronto-parallel planes at fixed
depths. It can be rendered at a given viewpoint by blend-
ing planes with a set of blending weights. These blending
weights are predicted from one image, and the other image is
used as the plane sweep volume (i.e. the value of the planes).
Apart from the representation, one major difference between
our method and StereoMag is that StereoMag makes use of
two images as input, which greatly simplifies the problem.

SFMLearner. SFMLearner disentangle a short video clip
into depth maps and camera trajectory. The method is struc-
turally similar to our method. However, there are several
major differences. (i) SFMLearner (and similarly, GeoNet,
etc.) results were shown on the relatively simple KITTI
dataset, but work poorly on more complex data [12]. (ii)
SFMLearner requires ground truth camera intrinsics, which
makes it more difficult to train on raw videos. (iii) SFM-



Stage Configuration Output
0 Input image H ×W × 3

2D feature extraction
1 Extract feature with Resnet-50 H

16
× W

16
× 2048

Reshaping 2D to 3D
2 Reshape feature dimension to 256 H

16
× W

16
× 8× 256

3D Convolutions

3
3D-Deconvolution

(43 kernel, 128 filters, stride 2)
H
8

× W
8

× 16× 128

4
3D-Deconvolution

(43 kernel, 32 filters, stride 2)
H
4

× W
4

× 32× 32

Table 1: 3D Encoder (F3D) architecture.

Stage Configuration Output
0 Two concatenated input image H ×W × 6

2D feature extraction

1
2D-convolution

(32 kernel, 16 filters, stride 2)
H
2

× W
2

× 16

2
2D-convolution

(32 kernel, 32 filters, stride 2)
H
4

× W
4

× 32

3
2D-convolution

(32 kernel, 64 filters, stride 2)
H
8

× W
8

× 64

4
2D-convolution

(32 kernel, 128 filters, stride 2)
H
16

× W
16

× 128

5
2D-convolution

(32 kernel, 256 filters, stride 2)
H
32

× W
32

× 256

6
2D-convolution

(32 kernel, 256 filters, stride 2)
H
64

× W
64

× 256

7
2D-convolution

(32 kernel, 256 filters, stride 2)
H
128

× W
128

× 256

8
2D-convolution

(12 kernel, 6 filters, stride 1)
H
128

× W
128

× 6

9 Mean pooling 6

10 Multiply by 0.01 6

Table 2: Architecture of ConvNet (H) for Trajectory Encoder
(FTraj). The last step could stabilize the training process.

Learner cannot produce satisfactory view synthesis results
because its spatial representation is a 2.5D depth map. We
use the predicted depth and camera transformation to warp
the first frame into the target frame.

Indoor SFMLearner. P2-Net, or the Indoor SFM-
Learner, proposes to use a patch-based loss to overcome
the optimization problem of SFMLearner, and shows better
results in indoor scenes. Similar to SFMLearner, we use
predicted depth and camera to warp the first frame into the
target frame. Because not all pixels in the target frame have
a corresponding pixel in the first frame, this method could
produce large blank areas (as seen in Fig. 4 and 5).

GQN Generative Query Network combines 2D features
of multiple input images into a 2D Neural Scene Representa-
tion. This 2D representation is then decoded with an LSTM
network conditioned on a query viewpoint. Although GQN
is shown to yield good results on toy datasets, we find it

Stage Configuration Output
0 Input 3D deep voxels H

4
× W

4
× 32× 32

1 Input 3D transformation 6

Rotating 3D deep voxels
2 Rotate deep voxels with input transf. H

4
× W

4
× 32× 32

3
3D-Convolution

(33 kernel, 64 filters, stride 1)
H
4

× W
4

× 32× 64

4
3D-Convolution

(33 kernel, 64 filters, stride 1)
H
4

× W
4

× 32× 64

Reshape 3D to 2D
5 Concatenate feature and depth dim. H

4
× W

4
× 2048

2D Convolutions (neural network renderer)

6
2D-convolution

(12 kernel, 512 filters, stride 1)
H
4

× W
4

× 512

7
2D-Deconvolution

(42 kernel, 64 filters, stride 2)
H
2

× W
2

× 64

8
2D-Deconvolution

(42 kernel, 32 filters, stride 2) H ×W × 32

9
2D-Deconvolution

(32 kernel, 3 filters, stride 1) H ×W × 3

Table 3: Decoder (G) architecture.

struggles to generate clear results for real-world scenes.
GRNN GRNN constructs an RNN-aggregated 3D voxel

from input images as scene representation. This 3D voxel
could be projected back into a set of 2D feature maps with
a specific query viewpoint and decoded into a query view.
While GRNN also makes use of a 3D deep voxel as repre-
sentation, several significant differences between our model
and GRNN include: (i) GRNN only support 2 degrees of
freedom for camera transformations (yaw and pitch) whereas
we support a full 6 DOF camera transformation (ii) GRNN is
trained with ground truth cameras whereas we do not make
use camera supervision. (iii) GRNN requires a complicated
matching process during testing. As shown in the main text
and Fig. 4 and 5, GRNN fails to produce satisfactory results
on RealEstate10K.

SSV. SSV is the state-of-the-art self-supervised viewpoint
estimation algorithm. Leveraging multiple constraints such
as cycle consistencies, SSV learns from image collections to
predict camera poses of these images. We retrained SSV on
the same training dataset, treating video frames as individual
images. The output of SSV is a rotation angle of a single
image. To obtain the relative pose, we concatenate pose
predictions of the reference frame and current frame. We
then fit a linear regression model to predict the true camera
transformation using about 600 true poses, similar to SSV’s
original testing procedure. For fair comparisons, we also
applied the Umeyama alignment [13].

4. Supplementary video

To better visualize the animated results of our model, we
also provide a supplementary video 01710_supp.mp4. In

01710_supp.mp4


the video, we show the results in videos rather than frames
as in the paper. We also provide motivation and descriptions
of our method.
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