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1. Few-Shot Learning

1.1. Observation of Attention Weight Change over
Training Epochs

In this section, we provide an empirical study on the
change of the attention weight corresponding the the input
dimension of the attention score, softmax

(
〈hmWQ

m,ẑWK〉√
d

)
,

over the entire training epochs. This study provides two in-
sights: 1. the dynamics of the activation of mechanisms
based on the number of training samples (shots); 2. the dis-
tribution of active and inhibited mechanisms over the train-
ing iterations. To show the dynamical change in a 2D plot,
we sample classes from the validation set and observe them
for the entire training process. Plots that uses Conv-4-64
and WRN-28-10 as backbone is shown in Figure 1 and Fig-
ure 2 respectively. From the plots, we can see that the acti-
vation of mechanisms are initially distributed uniformly fol-
lowed by slow convergence to a sparse distribution over the
training epochs, having only a few active mechanisms upon
convergence. The active and inhibited attention weights are
also clearly separated for all examples. Another observation
is that having a larger number of training samples (shots), a
smoother convergence for the activation weights across the
training epochs is obtained. Smooth convergence is also ob-
tained when a deeper backbone (WRN-28-10) is used when
compared to a shallower one (Conv-4-64). This observation
is intuitive as AIM is able to learn more efficiently when
more samples or higher quality input features are provided,
enabling the mechanisms to better model higher-order fac-
torized information.

Competitive selection of mechanisms. From the figures
shown, a distinct gap between active and inhibited mecha-
nisms can be clearly observed. This motivates the idea of
basing the activation of mechanisms on its corresponding
attention value (soft decision) instead of making a hard de-
cision that selects a total of K AIM on every inference. To
demonstrate if basing the activation of AIM on the attention

value would work, a simple experiment can be performed
by allowing a mechanism to be active if its attention value
is above 0.5 (similar to ReLU [5]), or:

z̃ = ẑ

(
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wm(ẑ)WM
m

)
, (1)

where wm(ẑ) is given as,

wm(ẑ) =


w̃m(ẑ), if m ∈ {m | w̃m(ẑ) > 0.5 and

1 ≤ m ≤M},
0, otherwise,

(2)
and w̃m(ẑ) is defined as,

w̃m(ẑ) = softmax

(
〈hmWQ

m , ẑWK〉√
d

)
. (3)

To keep our experiments simple, we do not induce stochas-
ticity in the original approach and fix K = 8 to provide a
fair comparison. We name the original method that keeps 8
mechanisms active as hard decision and name the method
in (1) – (3) as soft decision. Comparison between hard deci-
sion and soft decision is shown in Table 1. From the results,
we can see that when Conv-4-64 is used as backbone, higher
accuracy is obtained when hard decision is used. The oppo-
site can be observed when WRN-28-10 is used as backbone.
We deduce that when extracted features are more reliable,
i.e. through the use of deeper backbone or higher number of
shots, the attention weights are of higher quality leading to
clear distinction between relevant and less relevant mecha-
nisms.

1.2. Observation of Attention Weight for All Classes

Different from the previous section, we show the mask
instead of the attention weights here. The masks have a
value of 1 for active mechanisms and 0 for inhibited mech-
anisms having the competitive selection based on the at-
tention weights; for all experiments, K = 8 mechanisms
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Table 1: Results for the comparison of using either hard decision (proposed method; K = 8 with l = 0) or soft decision (1)
– (3) for the activation of mechanisms during inference. Average classification accuracies with 95% confidence intervals on
the test-set are shown.

Backbone Method MiniImageNet, 5-Way CIFAR-FS, 5-Way
1-shot 5-shot 1-shot 5-shot

Conv-4-64 Hard decision 61.90± 0.56% 74.55± 0.38% 70.80± 0.61% 80.50± 0.40%
Soft decision 61.74± 0.57% 74.41± 0.38% 70.18± 0.61% 80.38± 0.39%

WRN-28-10 Hard decision 71.03± 0.57% 82.30± 0.33% 79.19± 0.55% 87.04± 0.36%
Soft decision 69.96± 0.56% 82.37± 0.33% 80.14± 0.55% 87.41± 0.35%

will be active during both training and inference. We set
l = 2 to induce stochasticity during training. Instead of
sampling a single sample from each class, we take the av-
erage of the masks of each class accumulated across the en-
tire validation set. We show heatmaps covering all classes
and all 32 AIMs mechanisms on the first and final train-
ing epochs. Results that use Conv-4-64 as backbone using
shots-dataset pair of 1-shot-CIFAR-FS, 5-shot-CIFAR-FS,
1-shot-MiniImageNet and 5-shot-MiniImageNet are shown
in Figure 3, Figure 4, Figure 5 and Figure 6 respec-
tively. Results that use WRN-28-10 as backbone using
shots-dataset pair of 1-shot-CIFAR-FS, 5-shot-CIFAR-FS,
1-shot-MiniImageNet and 5-shot-MiniImageNet are shown
in Figure 7, Figure 8, Figure 9 and Figure 10 respectively.
By observing the heatmaps, we can see that the activation
of mechanisms in the first epoch are uniformly distributed
whereas in the final epoch, only a few set of mechanisms
that are jointly used between classes accompanied by a
sparse set of mechanisms that are invariant among samples
from the same class. This observation meets our expecta-
tion of learning a set of experts that are each responsible
for certain task. To give a better illustration on the tran-
sition of the heatmaps over the training epochs, we have
attached several .mp4 files that follows the naming conven-
tion of mask-DATASET MODEL #shot (italicized as wild-
card strings) along with the supplementary materials.

1.3. Manipulating the Stochastic Sampling and Ac-
tive Mechanisms Count

In this section, we show tabulated results of the manipu-
lation of stochastic sampling and active mechanisms count
as found in the main paper. The plots in the main paper
show zero mean-ed results whereas the actual accuracy is
reported in Table 2 and Table 3 for the maniputation of
stochastic sampling count and active mechanisms count re-
spectively. By looking at the tabulated results, we can say
that the introduction of some stochasticity on the compet-
itive selection of mechanisms during training is beneficial
for the overall performance.

2. Continual Learning

2.1. Quantitative Analysis

We show the plots from the main paper comparing dif-
ferent continual learning methods in Figure 14 with the ac-
companied tabulated data in Table 4. Baseline shown cor-
respond to the swapping of AIM layer with a single linear
layer with number of parameters close to the originally in-
troduced AIM layer to demonstrate that the increase in ac-
curacy is not from over-parameterization. From the results,
we can observe that with the addition of AIM as a module
for continual learning, consistent improvement in accuracy
can be obtained. It is also shown that the gain in accuracy
does not result from the increase in parameters as shown by
the accuracy attained using the baseline method.

2.2. Activation of AIM

Similar to the analysis done for the activations of mecha-
nisms for few-shot, we show the activations of mechanisms
when AIM is used for continual learning. We apply AIM
to both OML [2] and ANML [1] with activation heatmaps
when trained on Omniglot [4], CIFAR-100 [3] and MiniIm-
ageNet [6] in Figure 14a, Figure 14b and Figure 14c respec-
tively. We can observe that for Omniglot, the activation of
mechanisms are sparsely distributed when compared to the
activations obtained using CIFAR-100 and MiniImageNet.
We conjecture that this is due to the simplicity of extracted
representations, resulting in simpler higher-order modeling
by the mechanisms. For natural images like CIFAR-100
and MiniImageNet, the features are not as distinct as the
alphabets found in Omniglot, hence higher-order modeling
of representations isn’t as sparsely distributed. The sparsely
distributed activations found in Omniglot result in distinc-
tive increase in accuracy when compared to other datasets as
shown in Table 4, e.g. at a trajectory containing 600 classes,
the relative increase in accuracy when AIM is applied to
OML is 20.70%. Even when MiniImageNet is used, dis-
tinctive increment in accuracy can also be observed, e.g.
19.40% relative increment in accuracy when AIM is applied
to ANML, which be believe is due to the richness of infor-
mation embedded in the latent representation resulting from
the larger image size of 84×84. We believe that larger gain



in accuracy can be attained through the introduction of a
better feature extractor, i.e. an alternative to convolutional
layers.
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(a) CIFAR-FS, 1-shot.

0 10 20 30 40 50

Epoch

0.0

0.2

0.4

0.6

0.8

S
co

re

Attention Scores

(b) CIFAR-FS, 5-shot.
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(c) MiniImageNet, 1-shot.
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(d) MiniImageNet, 5-shot.

Figure 1: Change of attention weight or score corresponding to the input dimension over the training epochs. Different
datasets pairs with different amount of training samples (shots) are shown here, using Conv-4-64 as its backbone. Each line
represent an independent mechanism.
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(a) CIFAR-FS, 1-shot.
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(b) CIFAR-FS, 5-shot.
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(c) MiniImageNet, 1-shot.
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(d) MiniImageNet, 5-shot.

Figure 2: Change of attention weight or score corresponding to the input dimension over the training epochs. Different
datasets pairs with different amount of training samples (shots) are shown here, using WRN-28-10 as its backbone. Each line
represent an independent mechanism.
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(a) First epoch.
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(b) Last epoch.

Figure 3: Activation of AIM from few-shot learning. Training on CIFAR-FS with 1-shot using Conv-4-64 as backbone.
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(a) First epoch.
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(b) Last epoch.

Figure 4: Activation of AIM from few-shot learning. Training on CIFAR-FS with 5-shot using Conv-4-64 as backbone.
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(a) First epoch.
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(b) Last epoch.

Figure 5: Activation of AIM from few-shot learning. Training on MiniImageNet with 1-shot using Conv-4-64 as backbone.
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(a) First epoch.
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(b) Last epoch.

Figure 6: Activation of AIM from few-shot learning. Training on MiniImageNet with 5-shot using Conv-4-64 as backbone.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Mechanisms

butterfly
crab

shark
cattle

television
beetle
lamp
otter

motorcycle
tractor
flatfish
camel

sea
beaver

crocodile
maple tree

C
la

ss

AIMs Attention Weight (Epoch 0)

0.0

0.2

0.4

0.6

0.8

(a) First epoch.
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Figure 7: Activation of AIM from few-shot learning. Training on CIFAR-FS with 1-shot using WRN-28-10 as backbone.
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(a) First epoch.
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Figure 8: Activation of AIM from few-shot learning. Training on CIFAR-FS with 5-shot using WRN-28-10 as backbone.



0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Mechanisms

n02174001
n09256479
n03773504
n03770439
n01855672
n02138441
n03584254
n02950826
n02114548
n03535780
n02091244
n03980874
n02981792
n03417042
n03075370
n02971356

C
la

ss

AIMs Attention Weight (Epoch 0)

0.0

0.2

0.4

0.6

0.8

1.0

(a) First epoch.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Mechanisms

n02174001
n09256479
n03773504
n03770439
n01855672
n02138441
n03584254
n02950826
n02114548
n03535780
n02091244
n03980874
n02981792
n03417042
n03075370
n02971356

C
la

ss

AIMs Attention Weight (Epoch 49)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Last epoch.

Figure 9: Activation of AIM from few-shot learning. Training on MiniImageNet with 1-shot using WRN-28-10 as backbone.
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Figure 10: Activation of AIM from few-shot learning. Training on MiniImageNet with 5-shot using WRN-28-10 as backbone.
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Figure 11: Activation of AIM from continual learning. Subset of classes from Omniglot are shown.
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Figure 12: Activation of AIM from continual learning. Subset of classes from CIFAR-100 are shown.
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Figure 13: Activation of AIM from continual learning. Subset of classes from MiniImageNet are shown.

Table 2: Results for varying the stochastic sampling count K + l. Zero mean-ed plot is found in the main paper. Throughout
the experiment, K = 8 and l is varied. Average classification accuracies with 95% confidence intervals on the test-set are
shown.

Backbone Stochastic sampling count MiniImageNet, 5-Way CIFAR-FS, 5-Way
K + l 1-shot 5-shot 1-shot 5-shot

Conv-4-64

8 61.90± 0.56% 74.55± 0.38% 70.80± 0.61% 80.50± 0.40%
10 61.90± 0.57% 74.55± 0.38% 71.09± 0.62% 80.48± 0.40%
12 62.13± 0.58% 74.66± 0.38% 70.68± 0.62% 80.36± 0.39%
16 61.74± 0.57% 74.24± 0.38% 69.95± 0.63% 79.96± 0.40%
20 61.70± 0.57% 74.12± 0.38% 70.01± 0.62% 79.60± 0.41%
24 60.73± 0.57% 73.58± 0.39% 68.82± 0.63% 79.21± 0.40%
28 60.34± 0.56% 73.19± 0.38% 67.79± 0.64% 78.90± 0.41%
32 59.43± 0.56% 72.89± 0.38% 66.90± 0.63% 78.35± 0.41%

WRN-28-10

8 71.03± 0.57% 82.30± 0.33% 79.19± 0.55% 87.04± 0.36%
10 71.22± 0.57% 82.25± 0.34% 80.20± 0.55% 87.34± 0.36%
12 71.08± 0.57% 82.25± 0.34% 80.20± 0.55% 87.19± 0.36%
16 70.57± 0.57% 82.25± 0.34% 79.95± 0.56% 87.10± 0.36%
20 70.38± 0.57% 81.86± 0.34% 80.17± 0.56% 87.07± 0.36%
24 70.20± 0.57% 81.65± 0.34% 80.18± 0.56% 86.68± 0.36%
28 70.40± 0.57% 81.60± 0.35% 80.33± 0.56% 86.63± 0.37%
32 69.34± 0.55% 81.19± 0.34% 80.13± 0.56% 86.22± 0.38%



Table 3: Results for varying the active mechanism count K. Zero mean-ed plot is found in the main paper. Throughout the
experiment, K is varied and l = 0. Average classification accuracies with 95% confidence intervals on the test-set are shown.

Backbone Active Mechanism Count MiniImageNet, 5-Way CIFAR-FS, 5-Way
K 1-shot 5-shot 1-shot 5-shot

Conv-4-64

1 25.54± 0.26% 62.63± 0.40% 36.38± 0.40% 68.72± 0.44%
2 62.00± 0.57% 74.62± 0.38% 69.95± 0.61% 80.45± 0.40%
4 61.93± 0.56% 74.54± 0.38% 70.30± 0.60% 80.37± 0.39%
8 61.59± 0.56% 74.54± 0.38% 70.15± 0.62% 80.46± 0.39%

12 61.39± 0.56% 74.62± 0.38% 70.65± 0.61% 80.77± 0.38%
16 61.60± 0.55% 74.67± 0.38% 70.66± 0.60% 80.68± 0.39%
20 61.68± 0.56% 74.67± 0.39% 70.00± 0.61% 80.52± 0.39%
24 61.81± 0.56% 74.67± 0.38% 70.01± 0.61% 80.55± 0.39%
28 61.81± 0.56% 74.63± 0.39% 70.74± 0.60% 80.46± 0.39%
32 61.89± 0.56% 74.79± 0.39% 70.56± 0.61% 80.39± 0.39%

WRN-28-10

1 61.01± 0.55% 73.84± 0.37% 72.21± 0.57% 81.03± 0.41%
2 69.98± 0.56% 81.89± 0.34% 79.88± 0.55% 86.90± 0.36%
4 70.03± 0.56% 82.10± 0.33% 79.53± 0.55% 86.25± 0.37%
8 69.76± 0.57% 82.30± 0.33% 79.19± 0.55% 86.26± 0.37%

12 69.93± 0.56% 82.26± 0.33% 79.53± 0.55% 86.68± 0.37%
16 70.24± 0.55% 82.15± 0.33% 79.19± 0.55% 86.74± 0.37%
20 69.87± 0.55% 82.08± 0.34% 79.42± 0.54% 86.83± 0.37%
24 69.80± 0.56% 82.52± 0.33% 79.89± 0.54% 87.08± 0.37%
28 69.58± 0.55% 82.30± 0.33% 79.66± 0.54% 86.88± 0.37%
32 70.09± 0.55% 82.29± 0.33% 80.01± 0.53% 87.02± 0.37%

Table 4: Average meta-testing test accuracy of continual learning on various datasets. During training, trajectory of samples
are introduced, i.e. meta-test train images are fed to the model sequentially without the usage of rehearsal memory and evalu-
ation using meta-testing test set is performed at the end. Relative increment (decrease) in accuracy through the introduction of
AIM is shown in green (red), e.g. when 10 classes in a trajectory is introduced for Omniglot, a relative increment in accuracy
of +3.45 over OML is attained when AIM is inserted, shown as OML+AIM.

Method Number of classes
10 50 75 100 200 300 400 500 600

Dataset: Omniglot
Baseline 10.00 2.00 1.33 1.00 0.50 0.33 0.25 0.20 0.17

OML 94.34 80.69 76.30 73.61 62.96 56.61 51.27 47.34 44.56
ANML 82.60 84.92 83.60 81.92 76.85 72.83 69.12 65.74 63.41

OML+AIM 97.70 (+3.45) 98.60 (+1.28) 98.55 (+5.50) 97.75 (+8.41) 96.28 (+11.76) 94.08 (+17.58) 91.09 (+24.26) 85.51 (+22.93) 80.37 (+20.70)

ANML+AIM 94.25 (+11.65) 97.32 (+12.40) 93.05 (+9.45) 89.34 (+7.42) 84.52 (+7.67) 76.50 (+3.67) 66.83 (-2.29) 62.58 (-3.17) 59.68 (-3.74)

2 4 6 8 10 15 20 25 30

Dataset: CIFAR-100
Baseline 50.00 25.00 16.67 12.50 10.00 6.67 5.00 4.00 3.33

OML 81.57 61.46 58.24 52.39 53.65 39.42 33.58 28.53 26.78
ANML 86.86 73.03 63.66 56.60 50.01 45.02 40.06 36.29 34.15

OML+AIM 85.65 (+4.08) 79.46 (+18.00) 68.03 (+9.79) 60.44 (+8.04) 53.39 (-0.26) 46.16 (+6.74) 42.02 (+8.43) 36.17 (+7.64) 33.59 (+6.81)

ANML+AIM 84.10 (-2.76) 70.10 (-2.93) 60.90 (-2.76) 58.35 (+1.76) 55.88 (+5.87) 46.72 (+1.70) 39.84 (-0.23) 36.47 (+0.18) 28.81 (-5.34)

2 4 6 8 10 12 15 18 20

Dataset: MiniImageNet
Baseline 50.00 25.00 16.67 12.50 10.00 8.33 6.67 5.56 5.00

OML 63.00 42.17 30.80 28.40 23.31 19.26 16.82 13.97 11.54
ANML 73.25 48.42 33.42 28.44 23.43 19.49 16.66 13.81 12.73

OML+AIM 75.75 (+12.75) 56.13 (+13.96) 42.92 (+12.12) 38.94 (+10.53) 33.52 (+10.20) 28.57 (+9.30) 27.81 (+10.99) 23.85 (+9.89) 23.03 (+11.48)

ANML+AIM 85.25 (+12.00) 64.13 (+15.71) 52.97 (+19.56) 52.79 (+24.35) 44.90 (+21.47) 39.28 (+19.79) 36.67 (+20.01) 33.01 (+19.20) 32.13 (+19.40)
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Figure 14: Evaluation of continual learning methods using dataset of various scales. Meta-test testing (training) trajectories
are shown in solid (dashed) lines. All curves are averaged over 10 runs with standard deviation shown.
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