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Figure 1. Grid structure.

1. Solving Poisson Equation with Neumann
Boundary Conditions Through Discrete
Fourier Cosine Transform

In order to solve a discretization of 2D Poisson equation

02 0?
(axz + 8y?> u(z,y) = p(z,y)

numerically by Fourier transform, with Neumann boundary

condition
du(z,y)

on

The finite difference equation is:

Wit1,j + Wim1j + Wija1 + Ui o1 — 4 = pij.
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The grid structure is shown in Fig. 3, the lower left cor-
ner is (—1,—1) and the upper right corner is (1,1). The
(4, j)th sample point is in the center of the (7, j) — th cell,
the coordinates are (x;,y;),
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The spacial step-lengths are:
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We denote u(z;,y;) as u;j, then DCT of u;; is
M N . .
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The second derivaritives are
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Figure 2. Obliqueness condition.

where the relation is applied:

sin(a(i + 1)) — 2sin(a(4)) + sin(a(i — 1))

sin(ai)

_sin(a(i)) cosa + cos(a(i)) sina — 2sin(a(i))
sin(a(7))
sin(a(i)) cosa — cos(a(i)) sina
sin(a(7))
=2(cosa — 1).

Eventually, the discretized equation,

W1, = 2Ug5 + Wiy | Wig—1 — 2Wij + Uiy
+ = fij,
h2 h2
x y
becomes
A AR N
- t = Umn = fnLn-
h2 h2

In the supplementary material, we give a brief proof for
the obliqueness in Section 2, then show the regular structure
of the discrete Laplace matrix and the details for setting the
ghost cells in Section 3. Then we show more experimental
results, and explain the source code in Section 4.

2. Obliqueness Condition Proof

Lemma 2.1 (Obliqueness). Suppose ,Q* C R" are
bounded domains, Q is convex, O is C'. The density
functions f and g satsify the balance condition fQ f =
fQ* g, and are bounded, 0 < ¢y < f,g < ¢1 < o9,
the Brenier potential is u : Q) — R, its Legendre dual is
u* : Q* — R. Suppose x € 9Q and q € IQ*, Du(z) =y,
then

(n(2),n(y)) > 0. (1)

Proof. Assume on the contrary, as shown in Fig. 2, there
exists x € 00" and y € 99Q, (n(x),n(y)) < 0, then
(—n(z),n(y)) > 0. Let z = = — en(y), we have z € Q*,
for € > 0 small enough. By assumption Vu*(2) € Q. Then
by the convexity of u*,

(Vu'(z) -
(Vu'(z) -

Vu*(x),z — x)

0
y,n(y)) <0

2
<

Contradicts to the fact that Vu*(z) € € is an interior point.
O

By Caffarreli regularity theory [2, 1], if {2 and Q* are
convex with smooth boundary, the optimal transport map 7’
is differentiable and can be extended to the boundary, the
restriction of 7" on the boundary is a homeomorphism and
satisfying the obliqueness condition.

3. Algorithm

Regular Structure of the Laplace Matrix We use stan-
dard central differences to compute the differentials, the
Brenier potential is represented as a two dimensional m x n
matrix (u;;),

1
Di,uij = 7z (Wit + Uim1j = 2ui)
x
D2 wij = — (Wi o1+ uij1 — 2ui ;)
yy Vg 2 7,7+1 7,7 —1 1,]
by 2
9 1
Doyuij = = (i1 + ti1-1
x 'ty

— U1 41 — Uig1,j—1)

The discrete Laplace matrix has a canonical form

Dy -1 0
—I Dy
A =
. Dy —I
| 0 —I12 D |
where D1 and D, are the following matrices.
2 -1 07
-1 3
D, =
3 -1
| 0 -1 2 |
and
3 -1 07
-1 4
Dy =
4 -1
| 0 -1 3 ]

The regular structure of the Laplace matrix allow us to apply
FFT algorithm to speed up the computation.



Figure 3. The sample nodes (red) and the gohst nodes (blue) are in
the cell centers.

Ghost Cells for the Neumann Boundary Condition In
the FFT-OT algorithm, at the n + 1-th iteration, we set the
ghost cells in Fig. 3 by copying

P (=1,5) = 9"(0,5),
Pt (i, 1) = ™ (i, 0), )
M (M, j) = " (M ~1,5),
eM(i, N) = (i, N - 1)
Then we set the four ghost corners as
P (=1,-1) = (0,0,
w(”)(M» 1) = w(" (M— 1,0),
“)
(=1,N) =" (0,N 1),
<")(M N) =™ (M —-1,N—1).

This ensures the Neumann boundary condition 9p/dn = 0.

4. Experiments
4.1. More Experimental Results

Here we show more experimental results on the David
head model 4 and oldman head model 5.
Efficiency In order to measure the convergence speed, we
compute the L? distance between two adjacent intermediate
Kantorovich potentials »(™) and ¢~ and define it as
convergence error £,

1

2
log &, := log UQ o™ (p) — ™1 (p)|?dp

The left frames of Fig. 4 and 5 shows the logarithm of ¢,,
during the optimization for the Buddha model, it is clear
that the convergence error ¢,, decreases exponentially fast
with respect to n.

(a). the David head surface (b). the Kantorovich potential ¢
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Figure 4. The David head surface example. Resolution 1k x 1k,
€ =le —15.

(a). the old man head surface (b). the Kantorovich potential
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(c). convergence error (d). approximation error
Figure 5. The old man head surface example. Resolution 1k X 1k,
€ =le —15.

Accuracy The second metric measures the solution approx-
imation error. Suppose the resolution is n X n, the discrete
solution is u,,, the L? approximation error is defined as

1

|:/ |detD2un f/goDun( )|2dp 2)

The right frames of Fig. 4 and 5 shows the approximation



error decreases quadratic ally with respect to the image res-
olution n, E,, o 1/n?. This numerical result is consistent
with the convergence rate estimates in [3].

4.2. Source Code

The original version of the source code uses libfftw
[4], the installation and compilation are more complicated.
Hence we include a simplified version of FFT-OT algorithm
in the package, which uses the build-in matrix data struc-
ture, DCT and IDCT functions in OpenCV to simplify the
coding. Meanwhile, the original version of the source code
is available upon request.

DCT Poisson Equation Solver The algorithm for solv-
ing the DCT Poission equation is straight forward, and easy
to implement using OpenCV. Fig. 6 shows one example of

(a). input image u

(b). DCT transformation
- 3

7 (c). Laplacian of (a)f

Figure 6. The DCT Poisson equation solver example.

solving Poisson equation, frame (a) shows the input image
u, frame (b) is the DCT transformation of (a). Frame (c)
shows the Laplacian of u, f = Aw. Frame (d) is the solu-
tion to the Poisson equation using DCT, & = A~ f 4 ¢. By
comparing (a) and (d), we can see the solution is accurate.

FFT-OT Based on the DCT Poisson solver, the FFT-OT
algorithm is also easy to implement. Fig. 7 shows sev-
eral examples computed using FFT-OT algorithm. The left
column shows the source density functions, the target is
the Lebesgue’s measure the right column shows the corre-
sponding optimal transport maps. The density function in
frame (a) is represented by a Bezier function. The densi-
ties for other cases are all Gaussian distributions with the

(d). Solution to the Poisson equation

same mean (—0.25, —0.25), with different standard devia-
tions: o = (0.50,0.5) in (c), o = (0.25,0.25) in (e) and
o = (0.15,0.15) in (g). Fig. 8 shows the similar results
with different densities.

(a)Bezier function
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(c) N(—0.25,0.50) (d) OT map 1mage of (c)
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(e) N(—0.25,0.25)

(f) OT map image of (e)

(g) N(—0.25,0.15)
Figure 7. Computatlonal examples of FFT-OT algorithm.

(h) OT map image of (g)

Compilation The simplified version of the code has been
tested using MS Visual Studio. After setting the include and
library directories for OpenCV-4.5.0, the code can be com-
piled. The program requires on input argument, the input
image name. For more details, please check the comments



(a)Bezier function (b) OT map image of (a)

(c) N(0,0.650) (d) OT map image of (c)

i

(e) N(0,0.325) (f) OT map image of (e)
N

(2) N(0,0.165) (h) OT map image of (g)
Figure 8. Computational examples of FFT-OT algorithm.

in the code.
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