Calibrating Concepts and Operations:
Towards Symbolic Reasoning on Real Images
Supplementary Materials

1. Execution Examples

ﬂ I Q: Are there either white cabinets or beds?

A: No
[1] select[](cabinet): [,-7.1,1.5]
[2] filter[1])(white): [,-0.7,-8.1]
[3] merge[1,2](): 1.1*[1]+1.1%[2] = [,—7.9,-7.4]
[4] exist[3](): max([3]) =-7.4
[5] select[](bed): | ,-2.8,-3.8]
[6] exist[5](): max([5]) =-2.8
[7] union[4,61(): max([4],[6]) = -2.8 No

Q: Does the cake which is to the right of the girl
look brown and round?

A: Yes
[1] select[](girl): [-8.5, -7.8, ,2.4]
[2] relate_s[1](to the right of): [1.3, 1.3, ,2.1]
[3] select[](cake): [4.9, -2.3, ,-11.2]
[4] merge[2,3]: 1.1*[2]+0.4%[3] = [5.4, -1.8, ,-9.8]

[5] verify[4](brown): 2.8
[6] verify[4](round): 0.4
[7] intersect[5,6](): min([5],[6]) = 0.4 Yes

Figure 1: Examples of the execution process. Best view in color.

In Figure 1, two examples are shown to help better understand the reasoning process. For simplification, in each example,
only a few representative object region proposal boxes are shown. The output of each execution step (shown in different colors
corresponding to the image region colors) are the scores representing each region box being selected or not. By looking at
the intermediate outputs, we can see how each execution step changes the selection scores. For example, in example (a),
the select(cabinet) step produces positive scores for the cabinet object region and negative scores for the others, but after
filter (white) and the merge step, all scores become negative, which indicates that there is not white cabinet in this image.
At last, the output modules does logistic operation on top of the final selection scores to produce answers. For example, exist
checks whether there is a positive score to find if there is some objects being selected.

2. Module Details

While Section 4.2 shows computations for select and query modules, here in Table 1, we show details of all modules,
including their inputs, output, arguments, description and computation. In the inputs and output, bold symbols (e.g., d, a)

represent vectors while plain symbols (e.g., a) represent scalar scores.

Table 1: List of all modules. Inputs, output, arguments, description and computation details are shown for each module.

Module

| Inputs | Output | Arguments

| Description

Computation

Intermediate Modules

select

- dout concept, attr

find object named concept

e; = Masir(Vi),

P
do¥ = sim(e;, Ceoncept)

filter

din dout concept, attr

from the input d*", find object whose attribute attr is concept

e; = Mar (Vi)
d;‘es = Siln(ei~, Cg:n'n,(:ept,)s
dout — l\flergc(d'”‘, dres)

relate_o

modin | devt rel, rtype >

find the object of rel to d& from di”

— 'V' . .
eij = Miype(Vi, vj),
mask;; = sim(e;;, Crer),
N
res __ wm ..
dres = Zj:1 de‘mask,],
duut — Merge(d”l””', drcs)

relate_s

dir, dir | dowt rel, rtype

find the object of rel to d&* from di"

T MT v,
eU - Mrtg/pe (vjvvl)’
mask;; = sim(e;;, Crer),
N
res __ in .
di*® = 32;-, dyjmask;;,

devt = Merge(di®, dmes)

relate_ae

din, dir | dowt attr

find the object from d" that has the same attr with d*

€; = Matﬁr<vi)»
mask;; = sim(e;, e;),
res __ N in ..
die = Zj:l dzj‘maSkzw
dO’ll.f, — R’ICIgC(dsn. d’I'ES)

Output Modules

query

attr

query the attribute attr of the given input d'™

e; = Mattr(vi),
e=d"[e,e,...,en],
Aconcept = sim(e, Cconcept)a
concept € C(attr) 3

query_rel_s

di",dy | a rtype

query the relationship between d{" (subject) and di* (object)

€ij =~ Miugpe(Vio Vi),
e=> Ej:l 17 €5j
Apel = sim(e, CT&l)a
rel € C(rtype) *

in
2j°

query_rel_o

di*,dy* | a rtype

query the relationship between d}™ (object) and d4" (subject)

a = query_rel_s[rtype](dy”, d}")

verify

dr a concept, attr

verify whether the attribute attr of given input d*” is concept

eiv= MattT(Vi)’
e=d"[e1,e,...,en],
a = sim(e, Ceoncept)

choose

din,di" | a concept, attr

choose whether d{™ or d&" is of concept in specified attribute attr

a; = verifylattr, concept](d"),
ay = verify[attr, concept](d5")

verify_rel_s

din.di* | a rel, rtype

verify whether d¢" (subject) and d&" (object) are of relationship rel

eij ?VMQ e(Vi, V),
e=>", Ej:l dije;;dy;,
a = sim(e, Cpep)

verify_rel_o

din.di | a rel, rtype

verify whether df" (object) and d&"* (subject) are of relationship rel

a = verify rel s[rtype](dy’, di")

e, = MattT (vl)v

; S N
same s a attr whether objects in d*™ have the same attr e= % D ic1 €
—_ N gin g
a =73 -, di"sim(e;,)
e; = Mar(vi),
1 N in
. N . . e = L ‘e;
query_ae d",dy | a attr whether di" and d%" have the same attr) 25\71 e
e? =37 djje;,
a = sim(e!, e?)
i i . i ; For all possible attrs:
common di",dy" | a - what attribute do d{" and d%" share }p in ain
]] Aattr = (111e1y,ae[att?“](dl .dy")
exist dm a - whether object d"" exists a = max(d"")
intersect a”,ay | a - whether both ¢} AND a4 are true a = min(a}", a4*)
union al",ay" | a - whether a}” OR a%" is true a = max(ai", a4")

'In training, cross entropy loss is used for open questions (where the output module produces a vector a), while binary cross entropy loss is used for
binary questions (where the output module produces a scalar score a.

2We assign each relationship into one of the three predefined relationship types (rtype), which are spatial (e.g., to the left of, on top of, etc.),
semantic (e.g., wearing, holding, etc.) and spatial+semantic (e.g., sitting on, looking at, etc.).

3Here C(attr) represents the set of concepts of the given attribute attr.

“Here C(rtype) represents the set of relationships of the given relationship type rtype.

