
Calibrating Concepts and Operations:
Towards Symbolic Reasoning on Real Images

Supplementary Materials

1. Execution Examples

Q: Are there either white cabinets or beds? 
A: No

2 cabinet

0 towel

1 floor

[1] select[](cabinet): [−8.3, −7.1, 1.5]
[2] filter[1](white): [−9.9, −0.7, −8.1]
[3] merge[1,2](): 1.1*[1]+1.1*[2] = [−19.0, −7.9,−7.4]
[4] exist[3](): max([3]) = -7.4
[5] select[](bed): [−4.0, −2.8, −3.8]
[6] exist[5](): max([5]) = -2.8
[7] union[4,6](): max([4],[6]) = -2.8 No

0 cake

1 candle

2 girl

3 drawer

Q: Does the cake which is to the right of the girl 
look brown and round? 
A: Yes

[1] select[](girl): [-8.5, −7.8,−10.9, 2.4]
[2] relate_s[1](to the right of): [1.3, 1.3,−8.8, 2.1]
[3] select[](cake): [4.9, −2.3,−5.6, −11.2]
[4] merge[2,3]: 1.1*[2]+0.4*[3] = [5.4, -1.8, −9.1, −9.8]
[5] verify[4](brown): 2.8
[6] verify[4](round): 0.4
[7] intersect[5,6](): min([5],[6]) = 0.4 Yes

Figure 1: Examples of the execution process. Best view in color.

In Figure 1, two examples are shown to help better understand the reasoning process. For simplification, in each example,
only a few representative object region proposal boxes are shown. The output of each execution step (shown in different colors
corresponding to the image region colors) are the scores representing each region box being selected or not. By looking at
the intermediate outputs, we can see how each execution step changes the selection scores. For example, in example (a),
the select(cabinet) step produces positive scores for the cabinet object region and negative scores for the others, but after
filter(white) and the merge step, all scores become negative, which indicates that there is not white cabinet in this image.
At last, the output modules does logistic operation on top of the final selection scores to produce answers. For example, exist
checks whether there is a positive score to find if there is some objects being selected.

2. Module Details
While Section 4.2 shows computations for select and query modules, here in Table 1, we show details of all modules,

including their inputs, output, arguments, description and computation. In the inputs and output, bold symbols (e.g., d,a)



represent vectors while plain symbols (e.g., a) represent scalar scores. 1

Table 1: List of all modules. Inputs, output, arguments, description and computation details are shown for each module.

Module Inputs Output Arguments Description Computation

Intermediate Modules

select - dout concept, attr find object named concept
ei = Mattr(vi),

dout
i = sim(ei, cconcept)

filter din dout concept, attr from the input din, find object whose attribute attr is concept
ei = Mattr(vi),

dres
i = sim(ei, cconcept),

dout = Merge(din,dres)

relate o din
1 ,din

2 dout rel, rtype 2 find the object of rel to din
2 from din

1

eij = Mr
rtype(vi,vj),

maskij = sim(eij , crel),
dres
i =

∑N
j=1 d

in
2jmaskij ,

dout = Merge(din
1 ,dres)

relate s din
1 ,din

2 dout rel, rtype find the object of rel to din
2 from din

1

eij = Mr
rtype(vj ,vi),

maskij = sim(eij , crel),
dres
i =

∑N
j=1 d

in
2jmaskij ,

dout = Merge(din
1 ,dres)

relate ae din
1 ,din

2 dout attr find the object from din
1 that has the same attr with din

2

ei = Mattr(vi),
maskij = sim(ei, ej),

dres
i =

∑N
j=1 d

in
2jmaskij ,

dout = Merge(din
1 ,dres)

Output Modules

query din a attr query the attribute attr of the given input din

ei = Mattr(vi),
e = din · [e1, e2, ..., eN ],

aconcept = sim(e, cconcept),
concept ∈ C(attr) 3

query rel s din
1 ,din

2 a rtype query the relationship between din
1 (subject) and din

2 (object)

eij = Mr
rtype(vi,vj),

e =
∑N

i=1

∑N
j=1 d

in
1ieijd

in
2j ,

arel = sim(e, crel),
rel ∈ C(rtype) 4

query rel o din
1 ,din

2 a rtype query the relationship between din
1 (object) and din

2 (subject) a = query rel s[rtype](din
2 ,din

1 )

verify din a concept, attr verify whether the attribute attr of given input din is concept
ei = Mattr(vi),

e = din · [e1, e2, ..., eN ],
a = sim(e, cconcept)

choose din
1 ,din

2 a concept, attr choose whether din
1 or din

2 is of concept in specified attribute attr
a1 = verify[attr, concept](din

1 ),
a2 = verify[attr, concept](din

2 )

verify rel s din
1 ,din

2 a rel, rtype verify whether din
1 (subject) and din

2 (object) are of relationship rel

eij = Mr
rtype(vi,vj),

e =
∑N

i=1

∑N
j=1 d

in
1ieijd

in
2j ,

a = sim(e, crel)
verify rel o din

1 ,din
2 a rel, rtype verify whether din

1 (object) and din
2 (subject) are of relationship rel a = verify rel s[rtype](din

2 ,din
1 )

same din a attr whether objects in din have the same attr

ei = Mattr(vi),
e = 1

N

∑N
i=1 ei,

a =
∑N

i=1 d
in
i sim(ei, e)

query ae din
1 ,din

2 a attr whether din
1 and din

2 have the same attr

ei = Mattr(vi),
e1 =

∑N
i=1 d

in
1iei,

e2 =
∑N

i=1 d
in
2iei,

a = sim(e1, e2)

common din
1 ,din

2 a - what attribute do din
1 and din

2 share
For all possible attrs:

aattr = query ae[attr](din
1 ,din

2 )
exist din a - whether object din exists a = max(din)
intersect ain1 , ain2 a - whether both ain1 AND ain2 are true a = min(ain1 , ain2 )
union ain1 , ain2 a - whether ain1 OR ain2 is true a = max(ain1 , ain2 )

1In training, cross entropy loss is used for open questions (where the output module produces a vector a), while binary cross entropy loss is used for
binary questions (where the output module produces a scalar score a.

2We assign each relationship into one of the three predefined relationship types (rtype), which are spatial (e.g., to the left of, on top of, etc.),
semantic (e.g., wearing, holding, etc.) and spatial+semantic (e.g., sitting on, looking at, etc.).

3Here C(attr) represents the set of concepts of the given attribute attr.
4Here C(rtype) represents the set of relationships of the given relationship type rtype.


