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1. Object Classification Experiment Details

Datasets. To demonstrate the accuracy and availabil-
ity of the HR event streams generated by our method, we
test the classification performance on the N-MNIST [8],
CIFAR10-DVS [6], and ASL-DVS [1] datasets. The split
of training and test sets of the classification task is the same
way as the super-resolution task, i.e. we use the ground
truth HR event streams from the training set of the super-
resolution task as the training set in the classification task.
The test sets of the classification task are the ground truth
HR event streams in the test set of the super-resolution task
(denoted as GT events), the HR event streams generated by
our method on the test set of the super-resolution task (de-
noted as Ours) and those generated by Li et al. [5] (denoted
as Li et al.), respectively.

Model and training procedure. We use the model pro-
posed in [3] as the classification network, which contains a
quantization module and a classifier. The quantization mod-
ule takes the event stream as input and converts it into a
voxel-based representation in a differentiable way. In prac-
tice, the quantization kernel is selected as the trilinear ker-
nel and the quantized voxel is designed to contain 9 chan-
nels. The classifier takes the quantized voxel as input, ex-
tracts feature and classifies it. In practice, the classifier is
selected as ResNet34 and pre-trained on ImageNet. The
whole model is trained end-to-end by optimizing the cross-
entropy loss for 30 epochs with a batch size of 16. The opti-
mization method is Adam [4] with a learning rate of 1e− 4,
multiplied by 0.5 every 10 epochs.

2. Image Reconstruction Experiment Details

Datasets. To further prove the practicability and ro-
bustness of the proposed method, we test it on a more
challenging task, i.e. the image reconstruction task. The
dataset we choose is the Event Camera Dataset [7], which
contains 25 sequences captured by a DAVIS240 in real
scenes. Each sequence contains event stream and corre-
sponding ground truth gray-scale frames. Following the
settings in [9], 7 sequences among them are chosen as
the test set, i.e. dynamic 6dof, boxes 6dof, poster 6dof,
shapes 6dof, office zigzag, slider depth, and calibration.

Sequence Begin time (s) End time (s)
dynamic 6dof 5.0 20.0

boxes 6dof 5.0 20.0
poster 6dof 5.0 20.0
shapes 6dof 5.0 20.0
office zigzag 5.0 12.0
slider depth 1.0 2.5
calibration 5.0 20.0

Table 1. The chosen frames for evaluation. For each sequence,
we use all the frames between the begin timestamp and the end
timestamp for evaluation.

Then, 11 sequences containing similar scenes from the re-
maining are selected as the training set, i.e. boxes rotation,
boxes translation, office spiral, slider close, slider far,
dynamic rotation, dynamic translation, poster translation,
poster rotation, shapes rotation, and shapes translation.
For the event stream super-resolution task, we split each
sequence into samples with a duration of 50 milliseconds
without overlapping. In this way, the training set contains
10, 050 samples and the test set contains 6, 269 samples.
For the evaluation of image reconstruction task, we choose
the same ground truth frames with [9] from the 7 test se-
quences. The beginning and ending timestamps of the cho-
sen frames are shown in Table 1.

Implementation details. The ground truth HR event
streams, the HR event streams generated by our model and
by Li et al. [5] on the test set are used to reconstruct images.
In the image reconstruction task, we use the pre-trained
model provided in [9]. To match the super-resolution re-
sults, we done the image reconstruction with a fixed time
windows duration of 50ms. This is why our results are dif-
ferent from those reported in the original paper. For each
ground truth frame, we following the setting in [9] to choose
the reconstructed image with the closest timestamp (toler-
ance of ±5 ms). The criteria of the image reconstruction
task are mean square error (MSE, lower is better) and struc-
tural similarity (SSIM, higher is better). Before the evalua-
tion, we apply histogram equalization to the output images
and the ground truth images to make them more compa-
rable. Note that this pre-process is favored for the results
generated by [5], because our results are more balanced in



(a) Frame-GT (b) Frame reconstructed by GT events (c) Frame reconstructed by ours events (d) Frame reconstructed by Li et al. s events

Figure 1. The reconstructed images and corresponding intensity histograms. From left to right: (a) Ground truth frames. (b) Images
reconstructed from the HR ground truth event streams. (c) Images reconstructed from the HR event streams generated by our method. (d)
Images reconstructed from the HR event streams generated by Li et al. [5]. It can be seen that images reconstructed from our event streams
are more balanced in intensity.
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Figure 2. The network architecture with different numbers of lay-
ers in the ablation study. We list the parameters of the convo-
lutional and deconvolutional layers. The hyperparameters of the
spiking neurons are also provided.

intensity, as shown in Figure 1.

3. Network Architecture Experiment Details
In this ablation study, we test our model with different

numbers of layers and find that the performance decline as
the model becomes deeper. Figure 2 shows the architecture
of the models with different numbers of layers in the exper-
iment. Column (a) is our final model, consisting of 2 con-
volutional layers and 1 deconvolutional layer, and the hy-
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Figure 3. Visualization results on N-MNIST dataset.

perparameters of the spiking neuron are τs = τr = 1, 2, 4,
respectively. Then, we add a convolutional layer with hy-
perparameters of τs = τr = 2, as shown in column (b),
to expand the respective field and extract features. Column
(c) and (d) show models with 5 and 6 layers, respectively.
Inspired by FSRCNN [2], we use two convolutional layers
with a kernel size of 1 to shrink and expand the feature.
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Figure 4. Visualization results on ASL-DVS dataset.

4. More Visualization Result

In this supplementary material, we provide more event
stream super-resolution results on N-MNIST [8], CIFAR10-
DVS [6], and ASL-DVS [1] datasets. We visualize the in-
put LR event streams, the ground truth HR event streams,
results generated by our method and Li et al. [5], respec-
tively. Figure 3 shows the visualization results on the N-
MNIST dataset. Figure 4 shows the visualization results
on the ASL-DVS dataset, and Figure 5 shows the visualiza-
tion results on the CIFAR10-DVS dataset. It can be seen
that the proposed method could generate better HR event
streams with a clearer boundary and less noise than [5].
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Figure 5. Visualization results on ASL-DVS dataset.

5. Embedded Implementation

In the supplementary material, we also provide a video
to demonstrate the efficiency and usability of our method.
In the provided video, the super-resolution result generated
by the embedded implementation of our method in real sce-
narios is recorded. The result shows that our system can
generate high-quality HR event streams in real-time, which
proves the potential of our method for deployment on mo-
bile systems, e.g. quadrotors and driverless cars.
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