
Supplementary: Towards Robustness of Deep Neural Networks via
Regularization

A. Theoretical analysis of our framework
The proof of Theorem 1 is adapted from the proof of

Theorem 1 in [11]. Consider certain sets of joint proba-
bility distributions of three random variables (X,U,Z) ∈
X × U × Z . X can be taken as the input images, U as
the output of the framework, and Z as the latent codes.
PC,Z(U,Z) represents a joint distribution of a variable pair
(U,Z), where Z is first sampled from PZ and then U from
PC(U |Z). PC defined in (2) is the marginal distribution of
U when (U,Z) ∼ PC,Z .

The joint distributions Γ(X,U) or couplings between
values of X and U can be written as Γ(X,U) =
Γ(U |X)PX(X) due to the marginal constraint. Γ(U |X)
can be decomposed into an encoding distribution Q(Z|X)
and the generating distribution PC(U |Z), and Theorem 1
mainly shows how to factor it through Z.

In the first part, we will show that if PC(U |Z) are Dirac
measures, we have

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)}

= inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)} , (1)

whereP(X ∼ PX , U ∼ PC) denotes the set of all joint dis-
tributions of (X,U) with marginals PX , PC , and likewise
for P(X ∼ PX , Z ∼ PZ). The set of all joint distribu-
tions of (X,U,Z) such that X ∼ PX , (U,Z) ∼ PC,Z , and
(U ⊥⊥ X)|Z are denoted by PX,U,Z . PX,U and PX,Z de-
note the sets of marginals on (X,U) and (X,Z) induced by
PX,U,Z .

From the definition, it is clear that PX,U ⊆ P(PX , PC).
Therefore, we have

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)}

≤ inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)} , (2)

The identity is satisfied if PC(U |Z) are Dirac measures,
such asU = C(Z). This is proved by the following Lemma
in [11].

Lemma 1 PX,U ⊆ P(PX , PC) with identity if PC(U |Z =
z) are Dirac for all z ∈ Z . (see details in [11].)

In the following part, we show that

inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {`(f(X),C(Z))} . (3)

Based on the definition, P(PX , PC), PX,U,Z and PX,U de-
pend on the choice of conditional distributions PC(U |Z),
but PX,Z does not. It is also easy to check that PX,Z =
P(X ∼ PX , Z ∼ PZ). The tower rule of expectation, and
the conditional independence property of PX,U,Z implies

inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)}

= inf
Γ∈PX,U,Z

E(X,U,Z)∼Γ {`(f(X), U)}

= inf
Γ∈PX,U,Z

EPZ
EX∼P (X|Z)EU∼P (U |Z) {`(f(X), U)}

= inf
Γ∈PX,U,Z

EPZ
EX∼P (X|Z) {`(f(X),C(Z))}

= inf
Γ∈PX,Z

E(X,Z)∼Γ {`(f(X),C(Z))}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {`(f(X),C(Z))} (4)

Finally, since Y = f(X), it is easy to get

inf
Γ∈P(Y∼PY ,U∼PC)

E(Y,U)∼Γ {`(Y,U)}

= inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)} (5)

Now (1), (3) and (5) are proved and the three together prove
Theorem 1.

Our proposed framework readily applies to non-
deterministic case. If the classifier part is non-deterministic,
Lemma 1 provides only the inclusion of sets PX,U ⊆
P(PX , PU ), and we can get an upper bound on the Wasser-
stein distance between the ground-truth and predicted label
distributions:

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)}

≤ inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)}

≤
d∑
i=1

σ2
i + inf

Γ∈PX∼PX,Z∼PZ

E(X,Z)∼Γ

{
‖f(X)−C(Z)‖2

}
,

(6)



where we assume the conditional distributions PC(U |Z =
z) have mean values C(z) ∈ Rd and marginal variances
σ2

1 , ..., σ
2
d ≥ 0 for all z ∈ Z , where C : Z → X , and

`(y, u) = ‖y − u‖2. The above upper bound is derived by:

inf
Γ∈PX,U

E(X,U)∼Γ

{
‖f(X)− U‖2

}
= inf

Γ∈PX,U,Z

EPZ
EX∼P (X|Z)EU∼P (U |Z){‖f(X)− U‖2}

(7)

and

EU∼P (U |Z){‖f(X)− U‖2}
= EU∼P (U |Z){‖f(X)−C(Z) + C(Z)− U‖2}
= ‖f(X)−C(Z)‖2 + EU∼P (U |Z){‖C(Z)| − U‖2}
+ EU∼P (U |Z){< f(X)−C(Z),C(Z)− U >}

= ‖f(X)−C(Z)‖2 +

d∑
i=1

σ2
i . (8)

In equation (8), the second term of the second last row be-
comes 0 since the optimization will drive f(X)−C(Z) to
zero.

B. Implementation Details
B.1. Detection Model Training Algorithm

See details of training ER-Detector in Algorithm 1.

Algorithm 1 Training the Detection System
1: Input: Pre-trained encoder Qφ.
2: Training Procedure:
3: Feeding all the training set images {x}ntrain

i=1 into the
encoder Qφ and get {z′}ntrain

i=1 .
4: for t = 1, ...,m do, . m is the number of classes
5: Fit KDEt based onZ

′

t , whereZ
′

t is the set of z
′

i with
label t.

6: Generate noisy ({xbi}
nsetI
i=1 ) and adversarial ({xai }

nsetI
i=1 )

examples based on {xi}nsetI
i=1 .

7: for i = 1, ..., nsetI do
8: di = KDEt(xi), where the predicted label ŷi = t
9: dbi = KDEt(xbi ), where the predicted label ŷbi = t

10: dai = KDEt(xai ), where the predicted label ŷai = t

11: Train Logistic Regression based on {di}nsetI
i=1 and

{dbi}
nsetI
i=1 as negative examples and {dai }

nsetI
i=1 as pos-

itive examples.
12: End Procedure
13: Return Gβ

B.2. Kernel Density Estimation

Kernel density estimation (KDE) is used in the detector
Gβ to model the low-dimensional space of the projection

system. KDE is an unsupervised technique to estimate un-
known probability distribution. Suppose that z1, ..., zn are
training samples drawn from an unknown probability den-
sity fZ(z). Given z, we can use the following function to
estimate the density score at z:

f̂Z(z) =
1

n

n∑
i=1

Kσ(z, zi),

where Kσ(·, ·) stands for kernel functions. In the exper-
iments, one kernel density model is fitted for each class.
Therefore, if z is predicted with label t, the samples {z}ni=1

used to do the estimation are training samples from class t.
In the experiments, we apply the Gaussian kernel with

bandwidth σ:

Kσ(z1, z2) ∼ exp(−‖z1 − z2‖2/σ2).

The bandwidth parameter affects the “smoothness” of the
resulting density. A large bandwidth leads to a very
“smooth” density distribution. A small bandwidth usually
leads to a “spiky” density distribution.

C. Experimental Details

C.1. Datasets

In this paper, we compare the performance of our pro-
posed algorithm with other state-of-the-art defense methods
on several benchmark datasets:
• MNIST [8]: handwritten digit dataset, which consists

of 60, 000 training images and 10, 000 testing images.
These are 28 × 28 black and white images in ten dif-
ferent classes.
• CIFAR10 [7]: natural image dataset, which contains

50, 000 training images and 10, 000 testing images in
ten different classes. These are low resolution 32× 32
color images.
• STL10 [2]: color image dataset similar to CIFAR10,

but contains only 5, 000 training images and 8, 000
testing images in ten different classes. The images are
of higher resolution 96× 96.
• Tiny Imagenet [3]: a subset of Imagenet dataset. Tiny

Imagenet has 200 classes, and each class has 500 train-
ing images, 50 testing images, making it a challenging
benchmark for the defense task. The resolution of the
images is 64× 64.

Adversarial training parameters on different datasets are
shown in Table 1. The parameters are the same for both
Madry’s adversarial training and ER-Classifier for fair com-
parison.



Table 1. Parameters of adversarial training.
Data ε Number of Iterations

MNIST 0.3 40
CIFAR10 0.03 20

STL10 0.03 20
Tiny Imagenet 0.01 10

C.2. Dimension of Embedding Space

One important hyper-parameter of ER-Classifier is the
dimension of the embedding space. If the dimension is too
small, important features are “collapsed” onto the same di-
mension, and if the dimension is too large, it will be hard to
regularize the embedding and result in too much noise and
instability. The maximum likelihood estimation of intrinsic
dimension proposed by [9]1 is used to calculate the intrinsic
dimension of each image dataset, serving as a guide for se-
lecting the embedding dimension. The sample size used in
calculating the intrinsic dimension is 1, 000, and increasing
the sample size does not influence the results much. Based
on the intrinsic dimension estimated by [9], we test sev-
eral different values around the estimated intrinsic dimen-
sion and evaluate the models against the l∞-PGD attack.
All models are trained without min-max robust optimiza-
tion, and the experimental results are shown in Figure 1.

The final embedding dimension is chosen based on ro-
bustness, number of parameters, and testing accuracy when
there is no attack. The final embedding dimensions and es-
timated intrinsic dimensions are shown in Table 2.

Table 2. Pixel space dimension, intrinsic dimension calculated
by [9], and final embedding dimension used.

Data Data dim. Estimated Embedding dim.
Intrinsic dim.

MNIST 1× 28× 28 13 4
CIFAR10 3× 32× 32 17 16

STL10 3× 96× 96 20 16
Tiny Imagenet 3× 64× 64 19 20

Based on Figure 1, the embedding dimension close to the
estimated intrinsic dimension usually offers better results
except on MNIST. One explanation may be that MNIST is
a simple handwritten digit dataset, so performing classifica-
tion on MNIST may not require that many dimensions.

C.3. Epsilon Selection

Epsilon (ε) is an important hyper-parameter for adversar-
ial training. When doing Madry’s adversarial training, we
test the model robustness with different ε and choose the
best one. The experiment results are shown in Figure 2.

Based on Figure 2, we use ε = 0.3, 0.03, 0.03 in Madry’s
adversarial training on MNIST, CIFAR10 and STL10 re-
spectively. For Tiny Imagenet, we use ε = 0.01. To make

1Code publicly available at https://github.com/OFAI/
hub-toolbox-python3

a fair comparison, we use the same ε when training ER-
Classifier.

C.4. Prior Selection

ER-Classifier does not have restrictions on the choice of
prior. However, it is interesting to explore the performances
of different priors.

Three different prior distributions are tested on MNIST
and CIFAR10 datasets. They are standard Gaussian,
Uniform(−3, 3) and Cauchy(0, 1), where Cauchy(0, 1) has
the same support as standard Gaussian but is heavy tailed
and 99.7% of the standard Gaussian points lies within
[−3, 3]. All the models are trained without min-max ro-
bust optimization, and the experimental results are shown
in Figure 3. Based on the results, all three priors work well,
but standard Gaussian performs best on both datasets.

Ding et al. [5] prove that adversarial robustness is sen-
sitive to the input data distribution, and if the data is uni-
formly distributed in the input space, no algorithm can
achieve good robustness. They also empirically show that
cornered/concentrated data distributions tend to achieve
better robustness. Standard Gaussian pushes the embedding
space to be more concentrated, making the valid perturba-
tion space to be smaller. This may explain why Gaussian
prior performs a little bit better than two other priors.

D. More Detection Experiments

D.1. Testing Against High Confidence Adversarial
Examples

In [1], the author pointed out that LID detection method
is not able to detect high confidence adversarial examples
generated by C&W attack. This might be a concern for all
detection methods. Therefore, in this part, we apply C&W
to generate high confidence adversarial examples and test
the detectors against them.

We generate 100 high confidence adversarial examples
for both datasets and evaluate the detectors against them.
The confidences are 9 and 20 for MNIST and CIFAR10 re-
spectively. Based on the experiment, if the confidence goes
higher than those thresholds, it is difficult to generate adver-
sarial examples on the corresponding datasets within the L2

thresholds. The performances of the detectors are shown in
Tables 3-5.

Table 3. Trained on FGSM adv.examples and tested on high confidence
adv.examples generated by C&W.

Methods MNIST CIFAR10
ACC-NADV ACC-COM ACC-NADV ACC-COM

KD 63.50 11.00 86.50 16.00
LID 57.00 11.00 43.00 16.00
ER1 80.00 100.00 82.50 100.00
ER2 83.00 100.00 77.00 16.00
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Figure 1. Testing accuracy of models with different embedding dimensions under l∞-PGD attack.
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Figure 2. Testing accuracy of models with different ε on MNIST, CIFAR10 and STL10.

Table 4. Trained on PGD adv.examples and tested on high confidence
adv.examples generated by C&W.

Methods MNIST CIFAR10
ACC-NADV ACC-COM ACC-NADV ACC-COM

KD 74.00 11.00 74.50 16.00
LID 83.00 11.00 94.00 36.00
ER1 73.00 100.00 79.00 100.00
ER2 80.50 100.00 72.50 16.00

Table 5. Trained on C&W adv.examples and tested on high confidence
adv.examples generated by C&W.

Methods MNIST CIFAR10
ACC-NADV ACC-COM ACC-NADV ACC-COM

KD 69.50 11.00 74.00 16.00
LID 98.50 11.00 74.00 16.00
ER1 87.00 11.00 85.00 100.00
ER2 89.50 100.00 83.00 16.00

When tested against high confidence adversarial exam-
ples, ER1 can still maintain good performance while other
methods are heavily influenced. When trained on FGSM
adversarial examples, KD has better ACC-NADV on CI-
FAR10 while the ACC-COM is much lower than that of
ER1. When trained on PGD adversarial examples, LID
has better ACC-NADVs but in terms of ACC-COM, it per-
forms much worse than ER1. Similarly, when trained on
C&W adversarial examples, LID has better ACC-NADV

on MNIST, but the corresponding ACC-COM is worse than
that of ER2. Generally speaking, taking both ACC-NADV
and ACC-COM into consideration, ERs perform better than
the baseline methods under the high confidence setting.

D.2. Effect of Regularization

To show that regularization on the embedding space help
improve the robustness of ER-Detector, we fit frameworks
with only the encoder and classifier part (ER1− and ER2−),
where the encoder and classifier have the same structures as
in ER-Detector. The results are shown in Table 6. Consid-
ering both ACC-NADV and ACC-COM, ER-Detector per-
forms much better than structures without regularization.
Instead of fitting a discriminator to regularize the embed-
ding space, Kullback-Leibler distance is also tried. How-
ever, the KL loss and classification loss cannot converge
together during the training.

E. Loss Surface Visualization
To show that ER-Classifier outperforms Madry’s adver-

sarial training is not because of weird loss surface, we visu-
alized the loss surfaces of ER-Classifier and Madry’s adver-
sarial training on CIFAR10. Following the implementation
in [6], we vary the data input along a linear space defined
by the sign of the input gradient and a random Rademacher
vector, where the x- and y- axes represent the magnitude of
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Figure 3. Testing accuracy of models with different prior distributions under l∞-PGD attack.

Table 6. Performances of ERs− and ERs on MNIST and CIFAR10 against PGD, FGSM and C&W attacks.

Criteria PGD FGSM C&W
ER1− ER1 ER2− ER2 ER1− ER1 ER2− ER2 ER1− ER1 ER2− ER2

MNIST ACC-NADV 99.95 97.41 100.00 97.94 95.97 94.82 99.52 96.49 93.42 95.97 91.55 98.66
ACC-COM 1.11 63.81 1.41 44.13 31.54 81.15 8.67 76.70 9.61 99.91 9.75 100.00

CIFAR10 ACC-NADV 97.68 98.44 96.85 97.54 95.03 97.62 96.77 97.69 100.00 92.13 100.00 93.45
ACC-COM 58.74 80.49 49.11 86.78 52.31 59.82 55.83 61.60 10.06 100.00 11.54 100

the perturbation added in each direction and the z-axis rep-
resents the loss. Based on the results in Figure 4. We can
see that both methods have smooth loss surfaces.

F. Embedding Visualization
Larger versions of embedding visualization plots are

shown in Figure 5 and Figure 6.

G. Model Structure
MNIST, CIFAR10, STL10 and TinyImagenet classifier

structures used for baseline methods are shown in Table 7.
Details of ER-Classifier structures on the four benchmark
datasets are shown in Table 8. The discrminator architec-
ture is the same on four datasets: four fully connected lay-
ers. See code of model in code files in supplementary code
folder.

Table 7. Architectures of baseline networks.
Dataset Architecture

MNIST [8] 4Conv. + 4FC layers
CIFAR10 [7] VGG19 with BN [10]

STL10 [2] 6Conv. with BN and 5Max.Pool +4FC
Tiny Imagenet [4] 13Conv. with BN and 5Max.Pool +4FC

Table 8. Architectures of ER-Classifier Encoders.
Dataset Encoder Architecture Classifier Architecture

MNIST [8] 4Conv. with BN + 1FC 3FC with BN
CIFAR10 [7] 16Conv. + 1FC 4FC

STL10 [2] 6Conv. with BN +1FC 3FC
Tiny Imagenet [4] 13Conv. with BN and 5Max.Pool +1FC 3FC
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Figure 4. Loss surfaces of ER-Classifier and Madry’s adversarial training. (Left: ER-Classifier, Right: Madry’s adversarial training)
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Figure 5. 2D embeddings for E-CLA and ER-Classifier on MNIST.
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Figure 6. 2D embeddings for E-CLA and ER-Classifier on CIFAR10.


