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Layer kernel size stride dilation in out activation input
conv1 1 7 1 1 12 8 ReLU PSVs
conv1 2 7 2 1 8 16 ReLU conv1 1
conv2 1 3 1 1 16 16 ReLU conv1 2
conv2 2 3 2 1 16 32 ReLU conv2 1
conv3 1 3 1 1 32 32 ReLU conv2 2
conv3 2 3 2 1 32 64 ReLU conv3 1
conv4 1 3 1 1 64 64 ReLU conv3 2
conv4 2 3 1 1 64 64 ReLU conv4 1

up5 2 128 128 conv3 2 + conv4 2
conv5 1 3 1 1 128 32 ReLU nnup5
conv5 2 3 1 1 32 32 ReLU conv5 1

up6 2 64 64 conv2 2 + conv5 2
conv6 1 3 1 1 64 16 ReLU nnup6
conv6 2 3 1 1 16 16 ReLU conv6 1

up7 2 32 32 conv1 1 + conv6 2
conv7 1 3 1 1 32 16 ReLU nnup7
conv7 2 3 1 1 16 8 ReLU conv7 1
conv7 3 3 1 1 8 1 Sigmoid conv7 2

Table 1. Details of each layer in our 3D mask network.

1. Network Architecture
Our view synthesis pipeline utilizes two different 3D

CNNs to predict the MPI volumes and the 3D mask vol-
ume as described in Sec. 4.2 in the main paper. Both net-
works have similar structures as the one in Mildenhall et
al.[3]. However, we made some adjustments to keep the
network light for faster training and less memory consump-
tion. We show detailed layers for the mask network in Ta-
ble 1. The MPI network has the same structure except for
some changes in the overall input and output channels to
account for different view counts.

2. Ablation Studies on Loss Function
As discussed in Sec. 4.3 and Sec. 5.2 in the main pa-

per, we experiment with different losses to see if we can
acquire a 3D mask volume that is more interpretable and
possesses physical meaning. Two additional loss functions
are described as follows. The first loss is a mask supervi-
sion loss Lm, which forces the mask volume to match the
shape of the dynamic object in the scene. The second loss
is a sparsity loss Ls applied on the mask volume to encour-
age the network to reuse M̂ more. To be more specific, for
the mask loss, we use the work by Lin et al.[1], which takes
the individual frame I and the background Î in the video to
generate a dynamic object mask Vgt we later use as super-
vision. To supervise the mask volume, we directly regular-
ize the over-composited alphas from the warped foreground
MPI volumeW(M� V) to be consistent with Vgt. We de-
note the over-composited alpha values as m1. This mask
loss is similar to the mask supervision loss in Lu et al. [2].
We calculate the estimated background mask m0 by dilating

Table 2. Effect of different loss functions. Our rendering loss of-
fers better temporal consistency and slightly better visual quality.

Methods STRRED↓ PSNR↑ SSIM↑
Ours 0.1683 26.22 0.8390

Ours w/ Ls 0.1745 26.18 0.8393
Ours w/ Ls,Lm 0.1900 26.09 0.8374

the foreground mask with a kernel of size (5, 5) to produce
m′

1. The background mask is then m0 = 1 −m′
1. And the

mask supervision loss is:

Lm =
||m1 � (1− Vgt)||1

2||m1||1
+
||m0 � Vgt||1

2||m0||1
. (1)

Another loss is a L1 sparsity constraint on the mask vol-
ume to ensure it only covers the necessary portions,

Ls = ||
∑

(x,y,d)

V(x, y, d)||1. (2)

We use L + 0.1Ls + 0.25Lm for the full combination and
L+ 0.1Ls for the additional sparsity constraint.

As shown in Table 2 (same as Table 4 in the original
paper), our rendering loss still offers the most temporally-
stable results, whereas the other two losses trade tempo-
ral consistency for better interpretability. It is reasonable
that the mask supervision loss helps the network to give a
sparser and tighter prediction on the dynamic objects. How-
ever, it does not take into account the movements of the fo-
liage and the shadows, producing slightly unstable results
in those areas. The sparsity constraint is able to achieve
marginally better quality than the full Ls,Lm combination
as it retains some parts of the scene which might cover the
slight differences between frames.

Mask visualization can be found in Fig. 1. From the fig-
ure, we can observe that our mask volume removes areas
around the edges of the dynamic object and the occluded ar-
eas behind it. Moreover, the mask softly blends the shadows
cast by the moving object. Adding Ls, the mask becomes
sparser, ignoring most static areas. However, as shown in
Fig. 1, it still contains some areas around the plants on the
left and the building in the back. With Ls,Lm, the mask
has more physical meaning and the resulting 3D mask only
covers the dynamic object. This might be useful to extract
moving objects for other uses such as editing or object in-
sertion.
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Figure 1. 3D visualization of the masks from different loss functions. With alpha values from the instantaneous MPI, we collapse the
mask volumes using over composite to reduce plane count from 32 to 4 for better visualization. (e.g. plane 1∼8 to the furthest plane, ...,
plane 25∼32 to the nearest plane.) Note that there is no supervision on static parts in our final loss function, so the values in those parts
are unconstrained, resulting in soft blending between instantaneous frames and the background. In general, the 3D mask achieves better
temporal consistency by replacing the erroneous disoccluded parts with correct background observations.
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Figure 2. 3D visualization of the MPI volumes using our loss function L. Note that the person on the furthest plane in M is replaced by the
background in Mo.

We further examine the 3D visualization of
M, M̂, and Mo in Fig. 2. Note that in the blended
MPI Mo, the occluded area behind the person is filled
with actual background information, unlike in M, which
has repeated texture of the dynamic object. Since we do
not enforce any constraints on the static parts of the scene,
our mask has random values in these areas and softly
blends them with the background MPI. This does not affect
temporal consistency too much as the difference is minor
and some areas are free space which does not contribute
any color to the MPI volume as shown in Fig. 2.

3. Large distance view extrapolation

In Fig. 3, we show results when the target camera is
translated far more than the baseline of the input camera
pair. When large translational movement is introduced, the
conventional method[3] starts to show artifacts in the disoc-
cluded regions. On the contrary, our method still preserves
the background details even when the motion is larger, of-
fering a more graceful reduction in quality as the distance is
increased.

4. Extension to more input views

Although our proposed method primarily targets binoc-
ular view extrapolation, we also demonstrate that it can be
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Figure 3. Our algorithm is able to provide better visual quality than baseline methods even when the novel viewpoint is far away from
the input view. We show results when the baseline is 2.5× and 5× baseline between input views. Note that in the 5× case, our method
produces fewer artifacts compared to Mildenhall et al.[3], offering a more graceful degradation.
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Figure 4. Our proposed method can also be extended to take 4-view input. We feed 4 input views to both the MPI and mask networks to
acquire our result. Here the baseline method is also adjusted to use 4 input views instead of 2. Notice that the artifacts around the person
do not appear in our result.

extended to utilize more input views in Fig. 4 and in the
supplementary video. With more input views, it can ac-
quire better scene geometry for some cases where there are
ambiguities in the plane sweep volume. For example, some
ambiguities might occur when there is straight texture-less
structure (beams or handrails) parallel to the camera base-
line. Using additional cameras can provide more geometric
information and avoid similar situations. In Fig. 4, the main
difference is that we modify our network to take 4 input
views, which convert to 4 instantaneous images and 4 back-
ground images as input to the mask network, and output the
3D mask volume as in the pipeline shown in Fig. 4 in the
main paper.
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