
A. Datasets and Experiment Settings

Dataset CIFAR-10 has 50 thousand training images and
10 thousand testing images in 10 classes with resolution
32x32. CIFAR-100 has the same number of training/testing
images but in 100 classes. ImageNet-1k has over 1.2 mil-
lion training images and 50 thousand validation images in
1000 classes. We use the official training/validation split in
our experiments.

Augmentation We use the following augmentations as in
[38]: mix-up [64], label-smoothing [48], random erasing
[68], random crop/resize/flip/lighting and AutoAugment
[10].

Optimizer For all experiments, we use SGD optimizer with
momentum 0.9; weight decay 5e-4 for CIFAR-10/100, 4e-5
for ImageNet; initial learning rate 0.1 with batch size 256;
cosine learning rate decay [27]. We train models up to 1440
epochs in CIFAR-10/100, 480 epochs in ImageNet. Fol-
lowing previous works [2, 21, 5], we use EfficientNet-B3 as
teacher networks when training ZenNets.

B. Implementation

Our code is implemented in PyTorch. The synflow
implementation is available from https://github.
com/mohsaied/zero-cost-nas/blob/main/
foresight/pruners/measures/synflow.py.
The official TE-NAS score implementation is avail-
able from https://github.com/VITA-Group/
TENAS/blob/main/lib/procedures. The
official NASWOT implementation is available
from https://github.com/BayesWatch/
nas-without-training. Our searching and
training code are released on https://github.com/
idstcv/ZenNAS.

C. Additional Figures

We test the performance of ZenNets on devices other
than NVIDIA V100 GPU. The two hardware platforms are
considered. NVIDIA T4 is an industrial level GPU opti-
mized for INT8 inference. All networks are exported to
TensorRT engine at precision INT8 to benchmark their in-
ference speed on T4. Google Pixel2 is a modern cell phone
with moderate powerful mobile GPU. In Figure 5 and Fig-
ure 6, we report the inference speed of ZenNets on T4 and
Pixel2 as well as several SOTA models. The best ZenNet-
1.2ms is 10.9x times faster than EfficientNet on NVIDIA
T4, 1.6x times faster on Pixel2.

The evolutionary processes of optimizing zero-shot
proxies are plotted in Figure 7, 8, 9, 10, 11.
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Figure 5. ZenNets top-1 accuracy on ImageNet-1k v.s. infer-
ence latency (milliseconds per image) on NVIDIA T4, TensorRT
INT8, batch size 64. ZenNet-0.8ms∼1.2ms and ZenNet-400M-
SE∼900M-SE are plotted as two separated curves.
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Figure 6. ZenNets top-1 accuracy on ImageNet-1k v.s. inference
latency (milliseconds per image) on Google Pixel2, single image.
ZenNet-0.8ms∼1.2ms and ZenNet-400M-SE∼900M-SE are plot-
ted as two separated curves.

D. Zen-NAS on CIFAR

Following previous works, we use Zen-NAS to optimize
model size on CIFAR-10 and CIFAR-100 datasets. We use
Search Space I in this experiment. We constrain the number
of network parameters within {1.0 M, 2.0 M}. The resul-
tant networks are labeled as ZenNet-1.0M/2.0M. Table 4
summarized our results. We compare several popular NAS-
designed models for CIFAR-10/CIFAR-100 in Figure 13,
including AmoebaNet [41], DARTS [26], P-DARTS [8],
SNAS [59], NASNet-A [70], ENAS[38], PNAS [25], Prox-
ylessNAS [6]. ZenNets outperform baseline methods by
30% ∼ 50% parameter reduction while achieving the same
accuracies.
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Figure 7. NAS process for maximizing Zen-Score. x-axis: number
of evolutionary iterations. y-axis: Largest Zen-Score in the current
population.

0 20000 40000 60000 80000

EA iteration

1

2

F
lo

p
s

×108

FLOPs

Figure 8. NAS process for maximizing FLOPs. x-axis: number
of evolutionary iterations. y-axis: Largest FLOPs in the current
population.
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Figure 9. NAS process for maximizing grad-norm. x-axis: number
of evolutionary iterations. y-axis: Largest grad-norm in the current
population.
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Figure 10. NAS process for maximizing synflow. x-axis: number
of evolutionary iterations. y-axis: Smallest synflow in the current
population.
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Figure 11. NAS process for maximizing NASWOT. x-axis: num-
ber of evolutionary iterations. y-axis: Largest NASWOT score in
the current population.
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Figure 12. NAS process for maximizing TE-NAS score. x-axis:
number of evolutionary iterations. y-axis: Largest TE-NAS score
in the current population. The NTK score in TE-NAS is the
smaller the better. Therefore we use RN − NTK as TE-score in
EA. This is slightly different from [7] where the rank of NTK is
used as score.



1 2 3 4 5

# params ×106

96.5

97.0

97.5

T
o

p
-1

A
cc

u
ra

cy
(%

)

NASNet-A

AmoebaNet-B

PNAS

ENAS
DARTS

SNAS

ProxylessNAS

P-DARTS

ZenNet

(a) CIFAR-10

1 2 3 4

# params ×106

80.0

81.0

82.0

83.0

84.0

T
o

p
-1

A
cc

u
ra

cy
(%

)

DART

P-DARTS

ENAS

ZenNet

(b) CIFAR-100

Figure 13. ZenNet accuracy v.s. model size (# params) on CIFAR-
10 and CIFAR-100.

model # params FLOPs C10 C100

ZenNet-1.0M 1.0 M 162 M 96.5% 80.1%
ZenNet-2.0M 2.0 M 487 M 97.5% 84.4%

Table 4. ZenNet-1.0M/2.0M on CIFAR-10 (C10) and CIFAR-100
(C100).

E. Zen-Scores and Accuracies of ResNets un-
der Fair Training Setting

Model FLOPs # Params Zen-Score

ResNet-18 1.82G 11.7M 59.53

ResNet-34 3.67G 21.8M 112.32

ResNet-50 4.12G 25.5M 140.3

ResNet-101 7.85G 44.5M 287.87

ResNet-152 11.9G 60.2M 433.57

Table 5. Zen-Scores of ResNets.

ResNets are widely used in computer vision. It is in-

Model Top-1 [15] Top-1 (ours)

ResNet-18 70.9% 72.1%

ResNet-34 74.4% 76.3%

ResNet-50 77.4% 79.0%

ResNet-101 78.3% 81.0%

ResNet-152 79.2% 82.3%

Table 6. Top-1 accuracies of ResNets. Reported by [15] and using
enhanced training methods we used in this paper.
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Figure 14. ResNet/ZenNet Zen-Score v.s. top-1 accuracy on Ima-
geNet.

teresting to understand the ResNets via Zen-Score analy-
sis. We report the Zen-Scores of ResNets in Table 5. In
Figure 14, we plot the Zen-Score against top-1 accuracy of
ResNet and ZenNet on ImageNet. From the figure, it is
clearly that even for the same model, the training method
matters a lot. There is considerable performance gain of
ResNets after using our enhanced training methods. The
Zen-Scores positively correlate to the top-1 accuracies for
both ResNet and ZenNets.

Next we show that the Zen-Scores is well-aligned with
top-1 accuracies across different models. We consider two
baselines in Table 6. The 2nd column reports the top-1 ac-
curacies obtained in the ResNet original paper [15]. We
found that these models are under-trained. We use enhanced
training methods to train ResNets in the same way as we
trained ZenNets. The corresponding top-1 accuracies are
reported in the 3rd column.

F. Effectiveness of Zen-Score

We show that Zen-Score effectively indicates the model
accuracy during the evolutionary search. In the searching
process of ZenNet-1.0M, we uniformly sample 16 struc-
tures from the evolutionary population. These structures
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Figure 15. Zen-Score v.s. top-1 accuracy, 16 randomly sampled
structures generated from ResNet-50, with Kendall’s τ -score be-
tween accuracy and Zen-Score.

have different number of channels and layers. Then the
sampled structures are trained on CIFAR-10/CIFAR-100.
The top-1 accuracy v.s. Zen-Score are plotted in Figure 15.
The Zen-Scores effectively indicates the network accura-
cies, especially in high-precision regimes.

G. FLOPs/Params/Latency of ZenNets in Ta-
ble 1

proxy params FLOPs latency

Zen-Score 1.0M 170M 0.15ms
FLOPs 1.0M 285M 0.07ms
grad 0.2M 41M 0.14ms
synflow 1.0M 104M 0.11ms
TE-Score 1.0M 118M 0.08ms
NASWOT 1.0M 304M 0.25ms
Random 1.0M 110 M 0.09ms

Latency is measured on NVIDIA V100 FP16 batch size
64. ‘grad’ cannot find a model near params≈1M.

H. Zen-NAS for Object Detection
We apply Zen-NAS in designing ResNet-like networks

for MS-COCO Object Detection dataset, aligned with
ResNet-50 for the same mAP and/or the same speed. Fol-
lowing common practice, the resolution is 480x480, pre-
trained on ImageNet-1k for 12 epochs, using FCOS frame-
work. ZenNets achieve better mAP and/or faster inference
speed.

backbone params FLOPs latency mAP

ResNet-50 25.5M 18.8G 0.80ms 0.387
ZenNet-same-mAP 20.1M 9.25G 0.47ms 0.385
ZenNet-same-speed 61.5M 19.8G 0.76ms 0.403



I. Proof of Theorem 1
We introduce a few more notations for our proof. Suppose the network has L convolutional layers. The t-th layer has

mt−1 input channels and mt output channels. The convolutional kernel is θt ∈ Rmt×m−1t×k×k. The image resolution is
H × W . The mini-batch size is B. The output feature map of the t-th layer is xt. We use x

(i,b,h,w)
t to denote the pixel of

xt in the i-th channel, b-th image at cooridinate (h,w). N (µ, σ) denotes Gaussian distribution with mean µ and variance
σ2. For random variables z, a and a constant b, the notation z = a± b means |z − a| ≤ b. To avoid notation clutter, we use
C

1/δ
log (·) to denote some logarithmic polynomial in 1/δ and some other variables. Since the order of these variables in C

1/δ
log (·)

is logarithmic, they do not alternate the polynomial order of our bounds.
The input image x0 are sampled from N (0, 1). In a vanilla network without BN layer, the feature map x̄t is generated by

the following forward inference process:

x̄0 =x0

x̄t = [θt ∗ x̄t−1]+

where ∗ is the convolutional operator, [z]+ = max(z, 0).
In Zen-Score computation, BN layer is inserted after every convolutional operator. The forward inference now becomes:

gt =θt ∗ xt−1 (5)
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Please note that in Eq. (8), we use a modified BN layer instead of the standard BN, where we do not subtract mean value
in the normalization step. This will greatly simply the proof. If the reader is concerned about this, it is straightforward to
replace all BN layers with our modified BN layers so that the computational process exactly follows our proof. In practice,
we did not observe noticable difference by switching between two BN layers because the mean value of mini-batch is very
close to zero.

To show that the Zen-Score computed on BN-enabled network f(x0) = xL approximates the Φ-score computed on
BN-free network f̄(x0) = x̄L, we only need to prove

(

L∏
t=1

σ̄t)
2Eθ∥xL∥2 ≈ Eθ∥x̄L∥2 . (9)

In deed, when Eq. (9) holds true, by taking gradient w.r.t. x on both side, the proof is then completed. To prove Eq. (9), we
need the following theorems and lemmas.

I.1. Useful Theorems and Lemmas

The first theorem is Bernstein’s inequality. It can be found in many statistical textbooks, such as [53, Theorem 2.8.1].

Theorem 2 (Bernstein’s inequality). Let x1, x2, · · · , xN be independent bounded random variables of mean zero, variance
σ. |xi| ≤ K for all i ∈ {1, 2, · · · , N}. a = [a1, a2, · · · , aN ] is a fixed N -dimensional vector. Then ∀t ≥ 0,

P(

∣∣∣∣∣
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aixi

∣∣∣∣∣ ≥ t) ≤ 2 exp

[
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t2

σ2∥a∥22
,

t

K∥a∥∞

)]
.

A direct corollary gives the upper bound of sum of random variables.



Corollary 1. Under the same setting of Theorem 2, with probability at least 1− δ,∣∣∣∣∣
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That is,
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Therefore, with probability at least 1− δ,∣∣∣∣∣
N∑
i=1
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log (·)σ∥a∥2, C
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That is, ∣∣∣∣∣
N∑
i=1

aixi

∣∣∣∣∣ ≤ C
1/δ
log (·)σ∥a∥2 .

When the random variables are sampled from Gaussian distribution, it is more convenient to use the following tighter
bound.

Theorem 3. Let x1, x2, · · · , xN be sampled from N (0, σ), a ∈ RN be a fixed a vector. Then ∀t ≥ 0,

P(
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N∑
i=1

aixi

∣∣∣∣∣ > t) ≤ exp
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.

Corollary 2. With probability at least 1− δ,∣∣∣∣∣
N∑
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aixi
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2 log(1/δ)σ∥a∥2 = C
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The proof is simple since the sum of Gaussian random variables is still Gaussian random variables.
The following two lemmas are critical in our lower bound analysis. The proof is straightforward once using the symmetric

property of random variable distribution.

Lemma 3. Suppose x ∈ R is a mean zero, variance σ2 random variable with symmetric distribution. Then E[x]2+ = 4σ2/4.

Lemma 4. Suppose θi ∼ N (0, 1). ∥x∥ = ∥y∥ are two fixed vectors. Then
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∑
i

θixi]
2
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2
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i

θiyi]
2
+ .



I.2. Proof of Eq. (9)

Since x0 ∼ N (0, 1), with probability at least 1 − δ, ∥x0∥∞ ≤ C
1/δ
log (·) ≜ K0 for some constant K0. Now suppose at

layer t, ∥xt−1∥∞ ≤ Kt−1. The following lemma shows that after convolution, ∥gt∥∞ is also bounded with high probability.

Lemma 5. Let θ(i,b,h,w) ∼ N (0, 1), θt ∈ Rmt×mt−1×k×k. For fixed xt−1 ∈ Rmt−1×B×H×W , gt ≜ θt ∗ xt−1. Then with
probability at least 1− δ,

∥gt∥∞ ≤ C
1/δ
log (·)

2k
√
mt−1Kt−1 .

Proof. Let us consider g(j,b,α,β)
t , that is, the j-th channel, b-th image, at pixel (α, β). For any 1 ≤ j ≤ mt, 1 ≤ α ≤ H ,
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The variance of gt is bounded with high probability too.

Lemma 6. With probability at least 1− δ,
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Clearly, g(j,b,α,β)
t is Gaussian random variable with zero-mean.
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Define σ∗2
t ≜ 1

4mt−1k
2, the proof is completed.



Next we show that both σ
(i)
t and σ̄t concentrate around σ∗.

Lemma 7. With probability 1− δ,
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Proof. Directly apply Corollary 1,
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Then we have
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Next is our main lemma.

Lemma 8. Under the same setting of Lemma 7, with probability 1− δ,
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Therefore,
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Combining all above together, we are now ready to prove Eq. (9).
Denote z0 = 1. It is trivial to see that z0∥x0∥2 = z0∥x̄t∥2. By induction, suppose at layer t, we already have

zt−1∥xt−1∥2 = ∥x̄t−1∥2. Using Lemma 4,
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=Eθ∥ [θt ∗ zt−1xt−1]+ ∥2

=zt−1Eθ∥ [θt ∗ xt−1]+ ∥2

=zt−1Eθ∥ [gt]+ ∥2

On the other hand, from Lemma 8,

σ̄2
t zt−1∥xt∥2 =zt−1

σ̄2
t

(σ∗
t )

2
(σ∗

t )
2∥xt∥2

=zt−1(1±
ϵt√
mt

)(σ∗
t )

2∥xt∥2 Lemma [lem:sigma-i-concentration]

=zt−1(1±
ϵt√
mt

)
1

1± ϵt
∥ [gt]+ ∥2 .

Therefore,

Eθ{σ̄2
t zt−1∥xt∥2} = (1± ϵt√

mt
)

1

1± ϵt
Eθ∥x̄t∥2

By taking

zt ≜ σ̄2
t zt−1/[(1±

ϵt√
mt

)
1

1± ϵt
] ,

we complete the induction of zt∥xt∥2 = ∥x̄t∥2 for all t.
Chaining t = {1, 2, · · · , L}, we get

Eθ{(
L∏

t=1

σ̄2
t )∥xL∥2} =

L∏
t=1

[
(1± ϵt√

mt
)

1

1± ϵt

]
Eθ∥x̄L∥2 ,

where

ϵt ≜4C
1/δ
log (·)

5 1√
BHW

K2
t−1

Kt ≜C
1/δ
log (·)

2t
t∏

j=1

(1− ϵj)
−1/2K0 .

Finally, integrate everything together, we have proved that, with probability at least 1− δ,

(

L∏
t=1

σ̄2
t )Eθ{∥xL∥2} =

L∏
t=1

[
(1± ϵt√

mt
)

1

1± ϵt

]
Eθ∥x̄L∥2 .



That is,

L∏
t=1

[
(1− ϵt√

mt
)

1

1 + ϵ

]
≤

(
∏L

t=1 σ̄
2
t )Eθ{∥xL∥2}

Eθ∥x̄L∥2

≤
L∏

t=1

[
(1 +

ϵt√
mt

)
1

1− ϵt

]
.

To further simply the above results, we consider the asymptotic case where BHW is large enough. Then ϵt will be a
small number. By first order approximation of binomial expansion, (1+ ϵ)L ≈ 1+Lϵ+O(ϵ2). To see that ϵt is bounded by
a small constant, we denote γt ≜ maxj∈[1,t] ϵj . Then

Kt ≤O[(1 +
t− 1

2
γt−1)K0]

γt ≤ O{ K0√
BHW

[(1 +
(t− 1)

2
γt−1]} . (10)

By the recursive equation Eq. (10), when γt−1 ≤ 2
L−1 ,

γt ≤ O{ K0√
BHW

[(1 +
(t− 1)

2
γt−1]}

≤ O{ 2K0√
BHW

} .

Therefore, by taking 2K0√
BHW

≤ 2
L , that is BHW ≥ O{L2K2

0}, we have

ϵ = max ϵt ≤ O{ 2K0√
BHW

}

to be a small number.
When ϵ is a small number,

(
∏L

t=1 σ̄
2
t )Eθ{∥xL∥2}

Eθ∥x̄L∥2
≤

L∏
t=1

[
(1 +

ϵt√
mt

)
1

1− ϵt

]
≤(1 + ϵ)L(1− ϵt)

−L

≈(1 + Lϵ)2 .

Similarly,
(
∏L

t=1 σ̄
2
t )Eθ{∥xL∥2}

Eθ∥x̄L∥2
≥ (1− Lϵ)2 .



J. One Big Table of Networks on ImageNet

model resolution # params FLOPs Top-1 Acc latency(ms)

V100 T4 Pixel2

RegNetY-200MF 224 3.2 M 200 M 70.4% 0.22 0.12 118.17

RegNetY-400MF 224 4.3 M 400 M 74.1% 0.44 0.17 181.09

RegNetY-600MF 224 6.1 M 600 M 75.5% 0.25 0.21 173.19

RegNetY-800MF 224 6.3 M 800 M 76.3% 0.31 0.22 202.66

ResNet-18 224 11.7 M 1.8 G 70.9% 0.13 0.06 158.70

ResNet-34 224 21.8 M 3.6 G 74.4% 0.22 0.11 280.44

ResNet-50 224 25.6 M 4.1 G 77.4% 0.40 0.20 502.43

ResNet-101 224 44.5 M 7.8 G 78.3% 0.66 0.32 937.11

ResNet-152 224 60.2 M 11.5 G 79.2% 0.94 0.46 1261.97

EfficientNet-B0 224 5.3 M 390 M 76.3% 0.35 0.62 160.72

EfficientNet-B1 240 7.8 M 700 M 78.8% 0.55 1.02 254.26

EfficientNet-B2 260 9.2 M 1.0 G 79.8% 0.64 1.21 321.45

EfficientNet-B3 300 12.0 M 1.8 G 81.1% 1.12 1.86 569.30

EfficientNet-B4 380 19.0 M 4.2 G 82.6% 2.33 3.66 1252.79

EfficientNet-B5 456 30.0 M 9.9 G 83.3% 4.49 6.99 2580.25

EfficientNet-B6 528 43.0 M 19.0 G 84.0% 7.64 12.36 4287.81

EfficientNet-B7 600 66.0 M 37.0 G 84.4% 13.73 † 8615.92

MobileNetV2-0.25 224 1.5 M 44 M 51.8% 0.08 0.04 16.71

MobileNetV2-0.5 224 2.0 M 108 M 64.4% 0.10 0.05 26.99

MobileNetV2-0.75 224 2.6 M 226 M 69.4% 0.15 0.08 49.78

MobileNetV2-1.0 224 3.5 M 320 M 72.0% 0.17 0.08 65.59

MobileNetV2-1.4 224 6.1 M 610 M 74.7% 0.24 0.12 110.70

MnasNet-1.0 224 4.4 M 330 M 74.2% 0.17 0.11 65.50

DNANet-a 224 4.2 M 348 M 77.1% 0.29 0.60 157.94

DNANet-b 224 4.9 M 406 M 77.5% 0.37 0.77 173.66

DNANet-c 224 5.3 M 466 M 77.8% 0.37 0.81 194.27

DNANet-d 224 6.4 M 611 M 78.4% 0.54 1.10 248.08

DFNet-1 224 8.5 M 746 M 69.8% 0.07 0.04 82.87

DFNet-2 224 18.0 M 1.8 G 73.9% 0.12 0.07 168.04

DFNet-2a 224 18.1 M 2.0 G 76.0% 0.19 0.09 223.20

OFANet-9ms 118 5.2 M 313 M 75.3% 0.14 0.13 82.69

OFANet-11ms 192 6.2 M 352 M 76.1% 0.17 0.19 94.17

OFANet-389M(+) 224 8.4 M 389 M 79.1% 0.26 0.49 116.34

OFANet-482M(+) 224 9.1 M 482 M 79.6% 0.33 0.57 142.76



OFANet-595M(+) 236 9.1 M 595 M 80.0% 0.41 0.61 150.83

OFANet-389M* 224 8.4 M 389 M 76.3% 0.26 0.49 116.34

OFANet-482M* 224 9.1 M 482 M 78.8% 0.33 0.57 142.76

OFANet-595M* 236 9.1 M 595 M 79.8% 0.41 0.61 150.83

DenseNet-121 224 8.0 M 2.9 G 74.7% 0.53 0.43 395.51

DenseNet-161 224 28.7 M 7.8 G 77.7% 1.06 0.50 991.61

DenseNet-169 224 14.1 M 3.4 G 76.0% 0.69 0.65 490.24

DenseNet-201 224 20.0 M 4.3 G 77.2% 0.89 1.10 642.98

ResNeSt-50 224 27.5 M 5.4 G 81.1% 0.76 ‡ 615.77

ResNeSt-101 224 48.3 M 10.2 G 82.3% 1.40 ‡ 1130.59

ZenNet-0.1ms 224 30.1 M 1.7 G 77.8% 0.10 0.08 181.7

ZenNet-0.2ms 224 49.7 M 3.4 G 80.8% 0.20 0.16 357.4

ZenNet-0.3ms 224 85.4 M 4.9 G 81.5% 0.30 0.26 517.0

ZenNet-0.5ms 224 118 M 8.3 G 82.7% 0.50 0.41 798.7

ZenNet-0.8ms 224 183 M 13.9 G 83.0% 0.80 0.57 1365.0

ZenNet-1.2ms 224 180 M 22.0 G 83.6% 1.20 0.85 2051.1

ZenNet-400M-SE 224 5.7 M 410 M 78.0% 0.248 0.39 87.9

ZenNet-600M-SE 224 7.1 M 611 M 79.1% 0.358 0.52 128.6

ZenNet-900M-SE 224 13.3 M 926 M 80.8% 0.55 0.55 215.68

Table 7: One big table of all networks referred in this work.
+: OFANet trained using supernet parameters as initialization.
∗: OFANet trained from scratch. We adopt this setting for fair compari-
son.
†: fail to run due to out of memory.
‡: official model implementation not supported by TensorRT.



K. Detail Structure of ZenNets
We list detail structure in Table 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18.
The ’block’ column is the block type. ’Conv’ is the standard convolution layer followed by BN and RELU. ’Res’ is the

residual block used in ResNet-18. ’Btn’ is the residual bottleneck block used in ResNet-50. ’MB’ is the MobileBlock used
in MobileNet and EfficientNet. To be consistent with ’Btn’ block, each ’MB’ block is stacked by two MobileBlocks. That
is, the kxk full convolutional layer in ’Btn’ block is replaced by depth-wise convolution in ’MB’ block. ’kernel’ is the kernel
size of kxk convolution layer in each block. ’in’, ’out’ and ’bottleneck’ are numbers of input channels, output channels and
bottleneck channels respectively. ’stride’ is the stride of current block. ’# layers’ is the number of duplication of current
block type.

block kernel in out stride bottleneck # layers

Conv 3 3 24 2 - 1

Res 3 24 32 2 64 1

Res 5 32 64 2 32 1

Res 5 64 168 2 96 1

Btn 5 168 320 1 120 1

Btn 5 320 640 2 304 3

Btn 5 640 512 1 384 1

Conv 1 512 2384 1 - 1

Table 8. ZenNet-0.1ms

block kernel in out stride bottleneck # layers

Conv 3 3 24 2 - 1

Btn 5 24 32 2 32 1

Btn 7 32 104 2 64 1

Btn 5 104 512 2 160 1

Btn 5 512 344 1 192 1

Btn 5 344 688 2 320 4

Btn 5 688 680 1 304 3

Conv 1 680 2552 1 - 1

Table 9. ZenNet-0.2ms



block kernel in out stride bottleneck # layers

Conv 3 3 24 2 - 1

Btn 5 24 64 2 32 1

Btn 3 64 128 2 128 1

Btn 7 128 432 2 128 1

Btn 5 432 272 1 160 1

Btn 5 272 848 2 384 4

Btn 5 848 848 1 320 3

Btn 5 848 456 1 320 3

Conv 1 456 6704 1 - 1

Table 10. ZenNet-0.3ms

block kernel in out stride bottleneck # layers

Conv 3 3 8 2 - 1

Btn 7 8 64 2 32 1

Btn 3 64 152 2 128 1

Btn 5 152 640 2 192 4

Btn 5 640 640 1 192 2

Btn 5 640 1536 2 384 4

Btn 5 1536 816 1 384 3

Btn 5 816 816 1 384 3

Conv 1 816 5304 1 - 1

Table 11. ZenNet-0.5ms

block kernel in out stride bottleneck # layers

Conv 3 3 16 2 - 1

Btn 5 16 64 2 64 1

Btn 3 64 240 2 128 2

Btn 7 240 640 2 160 3

Btn 7 640 768 1 192 4

Btn 5 768 1536 2 384 5

Btn 5 1536 1536 1 384 3

Btn 5 1536 2304 1 384 5

Conv 1 2304 4912 1 - 1

Table 12. ZenNet-0.8ms



block kernel in out stride bottleneck # layers

Conv 3 3 32 2 - 1

Btn 5 32 80 2 32 1

Btn 7 80 432 2 128 5

Btn 7 432 640 2 192 3

Btn 7 640 1008 1 160 5

Btn 7 1008 976 1 160 4

Btn 5 976 2304 2 384 5

Btn 5 2304 2496 1 384 5

Conv 1 2496 3072 1 - 1

Table 13. ZenNet-1.2ms

block kernel in out stride bottleneck expansion # layers

Conv 3 3 16 2 - - 1

MB 7 16 40 2 40 1 1

MB 7 40 64 2 64 1 1

MB 7 64 96 2 96 4 5

MB 7 96 224 2 224 2 5

Conv 1 224 2048 1 - - 1

Table 14. ZenNet-400M-SE

block kernel in out stride bottleneck expansion # layers

Conv 3 3 24 2 - - 1

MB 7 24 48 2 48 1 1

MB 7 48 72 2 72 2 1

MB 7 72 96 2 88 6 5

MB 7 96 192 2 168 4 5

Conv 1 192 2048 1 - - 1

Table 15. ZenNet-600M-SE



block kernel in out stride bottleneck expansion # layers

Conv 3 3 16 2 - - 1

MB 7 16 48 2 72 1 1

MB 7 48 72 2 64 2 3

MB 7 72 152 2 144 2 3

MB 7 152 360 2 352 2 4

MB 7 360 288 1 264 4 3

Conv 1 288 2048 1 - - 1

Table 16. ZenNet-900M-SE

block kernel in out stride bottleneck # layers

Conv 3 3 88 1 - 1

Btn 7 88 120 1 16 1

Btn 7 120 192 2 16 3

Btn 5 192 224 1 24 4

Btn 5 224 96 2 24 2

Btn 3 96 168 2 40 3

Btn 3 168 112 1 48 3

Conv 1 112 512 1 - 1

Table 17. ZenNet-1.0M for CIFAR-10/CIFAR-100

block kernel in out stride bottleneck # layers

Conv 3 3 32 1 - 1

Btn 5 32 120 1 40 1

Btn 5 120 176 2 32 3

Btn 7 176 272 1 24 3

Btn 3 272 176 1 56 3

Btn 3 176 176 1 64 4

Btn 5 176 216 2 40 2

Btn 3 216 72 2 56 2

Conv 1 72 512 1 - 1

Table 18. ZenNet-2.0M for CIFAR-10/CIFAR-100


