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Figure 1. The ResNet18 structure and modulation applied on each
convolutional layer.

1. Network Structure

1.1. ResNet18 structure and inserted modulation

The ResNet18 structure and adaptation applied on each
convolutional layer is shown in Figure 1. The ResNet18 has
a 5×5 convolutional pre-processing layer and 4 consecutive
layer groups. Each layer group has 2 blocks with each block
having 2 convolutional layers. The number of filters in the
layer groups are [64, 128, 256, 512]. The detailed structure
of each adapted layer is shown in Figure 1 (Right).
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Figure 2. Detailed structure of the Lightweight Task Network.

1.2. Task Network

The structure of the task network is shown in Figure 2.
The input are support images with resolution 84×84, the fi-
nal output is a domain descriptor of dimension 1×64. Note
that only five convolutional layers each with 64 filters con-
tain learnable weights, which means that our task network
is lightweight and efficient.

2. Classifier and Training Details
2.1. Classifier Details

In the main paper, we generally describe the Maha-
lanobis classifier in our method. Here, we show the details.

We first compute the adapted features for the support set,
{zs}Ns=1 = fθ({xs}Ns=1; {γ`,β`}L`=1). Then for each class,
we compute the class mean µk and regularized covariance
matrixQk as

µk =
1

nk

∑
i

I[yi = k]zi ,

Qk = λkΣk + (1− λk)Σ+ βI, λk =
nk

nk + 1
.

Here, I[yi = k] is the indicator function and nk =∑
i I[yi = k] is the number of samples in class k of the

support set S. λk is a ratio to balance the task covariance Σ
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and the class covariance Σk:

Σ =
1

n

∑
i

(zi − µ)(zi − µ)T ,

Σk =
1

nk

∑
i

I[yi = k](zi − µk)(zi − µk)T ,

where µ = 1
n

∑
i zi is the task-mean. Given a query fea-

ture zq = fθ(xq; {γ`,β`}L`=1), the class probability is con-
structed as

p(yq = k|xq) ∝ exp(−(zq − µk)
TQ−1k (zq − µk)) .

2.2. Loss Function

To train the network, we need to maximize the log-
likelihood of query examples, i.e., minimize the classifica-
tion loss:

Lclassification =
∑
D∼Dtr

∑
(S,Q)∼D

∑
(xq,yq)∼Q

− log p(yq|xq)) .

(1)
This is consistent with the problem definition in Section 3
of the main paper. At first, a dataset D is randomly se-
lected from the training datasets Dtr = {D1, D2, . . . , Dn}.
Then, the task (S,Q) is sampled from dataset D. Finally,
(xq, yq) are sampled from the query set Q to compute the
classification loss as the negative log-likelihood of all query
examples.

With the domain classification loss (Eq. 3 in Section
4.2.2 of the main paper) added, the final loss is

L = Lclassification + Ldomain . (2)

3. More Experiments
3.1. The effectiveness of hard-gating

To study the effectiveness of the hard-gating mechanism
for parameter selection, we implement a model variant that
removes the domain classification loss (i.e., in Eq. 3 of main
paper, λ = 0 or equivalently Ldomain = 0) and employs a
soft-gating mechanism. This variant is named Spec(soft).
As shown in Table 1, the soft-gating model Spec(soft) per-
forms much worse than hard-gating model Spec(hard) with
the same number of learnable parameters. This verifies the
importance of hard-gating with the domain classification
loss to perform the domain-level supervision.

3.2. Parameter fusion

In the main paper, after we obtained the domain-specific
parameters (γg,βg) with selection and got the domain-
cooperative parameters (γa,βa) with attention, we formu-
late the parameter fusion as follows

γ = αγg + (1−α)γa (3)
β = αβg + (1−α)βa . (4)

Table 1. Effect of the hard-gating mechanism
Dataset Spec(soft) Spec(hard)

ImageNet 55.2 55.6
Omniglot 83.8 88.2
Aircraft 77.0 82.1
Birds 72.1 73.3

Textures 72.4 68.2
QuickDraw 71.3 75.1

Fungi 41.8 48.4
VGGFlower 89.5 85.9
TrafficSigns 73.2 74.4
MSCOCO 49.2 53.2

MNIST 93.3 94.8
CIFAR10 70.9 73.0

CIFAR100 56.0 61.9
In-Domain Avg 70.4 72.1

Out-of-Domain Avg 68.5 71.5
Overall Avg 69.7 71.9

Learnable Parameters 0.22M 0.22M

Table 2. Comparisons of different fusion strategies.
Dataset Average Weighted Channel

ImageNet 57.4 58.5 58.6
Omniglot 91.5 91.4 92.0
Aircraft 82.3 81.9 82.8
Birds 74.8 75.4 75.3

Textures 71.0 69.6 71.2
QuickDraw 77.7 78.1 77.3

Fungi 48.3 48.5 48.5
VGGFlower 90.3 90.6 90.5
TrafficSigns 77.9 77.3 78.0
MSCOCO 52.2 53.0 52.8

MNIST 95.4 95.2 96.2
CIFAR10 75.1 74.7 75.4
CIFAR100 61.9 61.7 62.0

In-Domain Avg 74.2 74.3 74.5
Out-of-Domain Avg 72.5 72.4 72.9

Overall Avg 73.5 73.5 73.9
Learnable Parameters 7.71M 7.72M 7.78M

Here, α ∈ R1×C is the channel-wise fusion ratio computed
as α = sigmoid(VSW

f + bf ).
To investigate the effectiveness of this channel-wise fu-

sion strategy, we implement two simple fusion strategies:
Average and Weighted. For Average, α = 0.5 is the naı̈ve
average fusion ratio. For Weighted, α ∈ R1×1 is computed
as α = sigmoid(VSW

f1 +bf1). From Table 2, we can see
that the proposed channel-wise fusion achieved the high-
est performance among all three fusion strategies, showing
the effectiveness of channel-wise fusion. Moreover, Chan-
nel only introduces 0.06M additional learnable parameters,
which is negligible.

To further explore how this channel-wise fusion strategy
influence the performance, we visualize the fusion ratio α
in the first layer group (64-dim). Figure 3 indicates that di-
verse fusion is applied for various datasets and dimensions.
The yellow areas indicate high fusion ratios (i.e., large α)
on the domain-specific parameters, while dark areas indi-
cate high fusion ratio (i.e., large 1 − α) on the domain-
cooperative parameters. Omniglot, QuickDraw and MNIST



Table 3. Comparison to the state-of-the-art methods on META-DATASET. Due to the shuffling issue2, Meta-Dataset updated the evaluation
on TrafficSigns. Therefore, We report the updated accuracy of all methods on TrafficSigns (i.e. 63.0± 1.0 for tri-M) here.

Dataset ProtoMAML [5] AR-CNAPS [4] TaskNorm [2] SimpleCNAPS [1] SUR-pf [3] SUR [3] tri-M (Ours)
ImageNet 47.9±1.1 52.3±1.0 50.6±1.1 58.6±1.1 56.4±1.2 56.3±1.1 58.6±1.0
Omniglot 82.9±0.9 88.4±0.7 90.7±0.6 91.7±0.6 88.5±0.8 93.1±0.5 92.0±0.6
Aircraft 74.2±0.8 80.5±0.6 83.8±0.6 82.4±0.7 79.5±0.8 85.4±0.7 82.8±0.7
Birds 70.0±1.0 72.2±0.9 74.6±0.8 74.9±0.8 76.4±0.9 71.4±1.0 75.3±0.8

Textures 67.9±0.8 58.3±0.7 62.1±0.7 67.8±0.8 73.1±0.7 71.5±0.8 71.2±0.8
QuickDraw 66.6±0.9 72.5±0.8 74.8±0.7 77.7±0.7 75.7±0.7 81.3±0.6 77.3±0.7

Fungi 42.0±1.1 47.4±1.0 48.7±1.0 46.9±1.0 48.2±0.9 63.1±1.0 48.5±1.0
VGGFlower 88.5±0.7 86.0±0.5 89.6±0.6 90.7±0.5 90.6±0.5 82.8 ±0.7 90.5±0.5
TrafficSigns 52.4±1.1 56.5±1.1 56.5±1.1 59.2±1.0 52.2±0.8 53.4±1.0 63.0±1.0
MSCOCO 41.3±1.0 42.6±1.1 43.4±1.0 46.2±1.1 52.1±1.0 52.4±1.1 52.8±1.1

MNIST NA 92.7±0.4 92.3±0.4 93.9±0.4 93.2±0.4 94.3±0.4 96.2±0.3
CIFAR10 NA 61.5±0.7 69.3±0.8 74.3±0.7 66.4±0.8 66.8±0.9 75.4±0.8

CIFAR100 NA 50.1±1.0 54.6±1.1 60.5±1.0 57.1±1.0 56.6±1.0 62.0±1.0
In-Domain Avg 67.5 69.7 71.9 73.8 73.6 75.6 74.5

Out-of-Domain Avg 46.8 60.7 63.2 66.8 64.2 64.7 69.9
Overall Avg 63.4 66.2 68.5 71.1 70.0 71.4 72.7

Learnable Parameters 10.49M 13.4M 9.39M 8.60M 1.67M 79.45M 7.78M
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Figure 3. The channel-wise fusion ratio on all datasets. Y-axis
represents [ImageNet, Omniglot, Aircraft, Birds, Textures, Quick-
Draw, Fungi, VGGFlower, TrafficSings, MSCOCO, MNIST, CI-
FAR10, CIFAR100] ranging from 0 to 12. X-axis represents chan-
nel dimension.

have high fusion ratios on the domain-specific parameters
since their features are far from the backbone (pre-trained
on ImageNet) and require specialized and separated fea-
ture modulation. On the contrary, ImageNet, CIFAR10,
and CIFAR100 have high ratios on the domain-cooperative
parameters, since these datasets are visually similar to the
pre-trained backbone and try to explore more correlations
among datasets.

3.3. Other Comparison Experiments

SUR [3] with Mahalanobis distance. In original SUR
paper, the authors utilize an Euclidean distance for classi-
fication. However, recently SimpleCNAPs [1] shows that
the second-order classifier (i.e. Mahalanobis distance) per-
forms better than Euclidean distance. Therefore, we follow
SimpleCNAPs to utilize the Mahalanobis classifier.

In this situation, one would wonder the performance
of SUR with Mahalanobis distance. To answer this ques-
tion, we equip the original SUR implementation with Ma-
halanobis classifier. Moreover, since the feature dimension

2https://github.com/google-research/meta-dataset/issues/54

Table 4. Comparisons of different methods with Mahalanobis clas-
sifier. “Diag” denotes the method only considering diagonals of
the covariance matrix.

Classifier Dim Overall Acc Infer time
SUR Mahalanobis 4096 68.92 67.2s/task
SUR Diag Mahalanobis 4096 69.91 16.2s/task

SimpleCNAPs Mahalanobis 512 72.20 0.44s/task
Ours Mahalanobis 512 73.90 0.41s/task

of SUR is 40963, it requires computing a covariance matrix
Σ ∈ R4096×4096 and its inverse, which is time-consuming
and unstable to train. Thus, we implement a fast variant
by only considering the diagonals of the covariance ma-
trix. As shown in Table 4, SUR variants with both the full
and diagonal Mahalanobis classifiers are much slower and
less accurate than ours. We conjecture that especially un-
der the few-shot setting, estimating the high-dimensional
covariance matrix become infeasible.

3.4. Updated Results for Shuffled TrafficSigns

Due to the shuffling issue reported at the Meta-Dataset
repo, Meta-Dataset recommends a new evaluation protocol
for TrafficSigns with shuffling at test time. Here, we re-
port the updated results for our method and the baselines in
Table 3.
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