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1. Addtional Experiments
1.1. Experiment on SVHN

Search Setting. We also search augmentation on SVHN
[3]. Similar as the experiments on CIFAR-10/100, we first
search augmentation on a proxy task with a small network,
Wide-ResNet-40-2 on part of the dataset for 20 epochs. We
split 3000 images for training dataset S;q;, and 3000 im-
ages for S,4;. The training mini-batch size is 32 while the
validation mini-batch size is 256. At each step, we sam-
ple L=3 augmentation policies randomly according to a
uniform distribution. The number of operation N, in an
augmentation policy is 2. The search is carried out on a sin-
gle RTX 2080Ti GPU. As for initialization, we initialize p,
equally and p;), as 0.35.

oy, and a, are updated with Adam optimizers. The
learning rate for a,, is 0.005, and that for oy, is 0.001.
For the 2 optimizers, we set 51 = 0.5, 82 = 0.999. The
network parameters of Wide-ResNet-40-2 are updated with
SGD optimizer with momentum as 0.9. The learning rate is
0.05, with cosine decay, and the weight decay is 0.0005.
Training Setting. After search, we apply the searched aug-
mentation to Wide-ResNet-28-10. We train the network for
160 epochs on the full training set and report the perfor-
mance evaluated on test set. We set initial learning as 0.005,
batch size as 128, momentum as 0.9, weight decay as 0.001,
and cosine learning rate decay.
Result. The search cost and test error rate are shown in Ta-
ble[T] We run the experiment for three times and report the
average test error rate. Compared with other efficient auto-
matic augmentation methods, our DDAS can also achieve
comparable performance and efficiency.

1.2. The effectiveness of policy number L.

Our DDAS achieves efficient search because it can
search for good augmentation policies with limited sam-
pled augmentation policies at each step (L = 2, 3). We
further explore the effectiveness of sampled augmentation
policy number L on the performance of searched policies.
We search for augmentation policies with different L val-

ues and show the results in Table[2} We can see that simply
increasing the sampled augmentation policy number L does
not increase the performance.

2. Implemntation Details

2.1. Image Classsification

Operations. Here we list the augmentation operations used
for image classification.

e Identity e AutoContrast e Equalize

e Rotate e Solarize e Color

® Posterize e Contrast e Brightness
e Sharpness e Shear-x/y e Smooth

e Translate-x/y e Invert e Blur

e FlipLR e F1lipUD

Similar as AA [1f], the operations are from PIL, a popu-
lar Python image library In addition, we add Cutout to
search space of ImageNet, and use it defaultly with region
size as 16 pixels on CIFAR-10/100 and SVHN.
Magnitude. As for the magnitude, we follow RA [2]
and use the same linear scale for indicating the magnitude
(strength) of each transformation. As mentioned in Method,
we discretely sampled magnitude value, and the selected
magnitude values for CIFAR-10/100, SVHN and ImageNet
are listed in Table[3

2.2. Object Detection

For object detection, we use the operations in [4]. The
magnitude setting keeps the same as [4]]. The selected mag-
nitude values for COCO is listed in Table 3l

3. Experiments Details

3.1. CIFAR-10/100 & Sanity Check

Search Setting. As for search both oy, and o, are updated
with Adam optimizers. The learning rate for o, is 0.005,
and that for oy, is 0.001. For both of the 2 optimizers, we
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Table 1. SVHN test error rates (%) and search cost (GPU hour). WRN is shorthand of Wide-ResNet.

| Baseline Cutout AA PBA FastAA RA Faster AA DADA | DDAS
Error
WRN-28-10 1.5 1.3 1.1 1.2 1.1 1.0 1.2 1.2 1.2
Cost
WRN-28-10 - - 1000 1 1.5 - 0.06 0.1 0.1
Table 2. Sampled augmentation policy number L ablation. 3.3.COCO

L 3 7 11
Error | 16.6 16.8 17.1

Table 3. Manitudes sampled for different datasets

Dataset [ mag
CIFAR-10/ CIFAR-100/ SVHN | {2,6, 10,14}
ImageNet {7,14}
COCO {4,6,8}

set /1 = 0.5, B2 = 0.999. The network parameters of
Wide-ResNet-40-2 are updated with SGD optimizer with
momentum as 0.9. The learning rate is 0.05, with cosine
decay, and the weight decay is 0.0005.

As for Sanity Check, the settings are basically similar as
that of CIFAR-10/100 experiments. The difference is that
we only use IV, = 1, magnitude as 2 and py,, initialized as
0.75.

Training Setting. Both of the 2 training networks are
trained with SGD optimizer whose momentum is 0.9. The
batch size is 128 and the cosine LR schedule is adopted for
all the models. For Wide-ResNet-28-10, we set initial learn-
ing as 0.1 and weight decay as 0.0005. For Shake-Shake(26
2x96d), we set initial learning as 0.01 and weight decay as
0.001. The p¢(1), ..., pt(Timas) are smoothed with a mean
filter whose size F; = 2.

3.2. ImageNet

Search Setting. Both oy, and a, are optimized with Adam
optimizer. The learning rate for o, is 0.003, and that for
oy is 0.002. For the 2 optimizers, we set 51 = 0.5, 82 =
0.999. The network parameters of ResNet-18 are updated
with SGD optimizer. The learning rate is 0.01, with cosine
decay, the momentum is 0.9 and the weight decay is 0.0001.

Training Setting. As for training, the 2 networks are
trained with SGD optimizer whose momentum is 0.9. We
set initial learning rate as 0.2, batch size as 512, momentum
as 0.9, weight decay as 0.0001 and step learning decay by
0.1 at epoch 90, 180 and 240. For fair comparison we repro-
duce RA on ResNet-50 with our training setting and report
the result. The p;s are smoothed with a mean filter whose
size Fi;, = 6.

Search Setting. Both a,, and oy, are updated with Adam
optimizers. The learning rate for ¢, is 0.001, and that for
oyp 15 0.001. And we set 31 = 0.5, B2 = 0.999 for the 2
optimizers. The parameters of RetinaNet are updated with
SGD optimizer. The learning rate is 0.04, with step learning
decay at epoch 24 and 28, the momentum is 0.9 and the
weight decay is 0.0001.

Training Setting. Both of the 2 training networks are
trained with SGD optimizer whose momentum is 0.9. We
set the initial learning rate as 0.08, batch size as 64, mo-
mentum as 0.9, weight decay as 0.0001 and step learning
rate decay at epoch 120 and 140.
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