
Appendices
A. k-means++ Seeding Algorithm

As shown in Algorithm 2, the core idea of k-means++ seeding
algorithm is to sample S centers sequentially, where each new cen-
ter is sampled with probability proportional to the squared distance
to its nearest center. The set of centers returned by Algorithm 2 is
theoretically guaranteed to far away from each others [1].

Algorithm 2: k-means++seeding Algorithm [1]

Input: G := {pi : pi ∈ RD}; Target size S
Output: Center set C of size S

1 C1 = {c1}, where c1 is sampled uniformly at
random from G

2 for t = 2, · · · , S do
3 Et(x) := minc∈Ct−1 ||x− c||2
4 ct ← sample x from G with probability

E2
t (x)∑

x∈G E2
t (x)

5 Ct ← Ct−1 ∪ ct
6 end
7 return CS

B. The details about the benchmark datasets

The detailed statistic and the default data augmentation for the
benchmark datasets are listed as belows.

• CIFAR-10 & CIFAR-100 [18]: The training sets of the two
datasets are composed of 50,000 colored images with 10 and
100 classes, respectively. Each image in these two datasets
is in size of 32 × 32. For CIFAR datasets, the default aug-
mentation crops the padded image at a random location, and
then horizontally flips it with the probability of 0.5. Then, it
applies Cutout [8] to randomly select a 16× 16 patch of the
image, and set the pixels within the selected patch as zeros.

• SVHN [21]: This dataset contains color house-number im-
ages with 73,257 core images for training and 26,032 digits
for testing. The default augmentation crops the padded im-
age at a random location. Then it applies Cutout to randomly
select a 16× 16 patch of the image, and set the pixels within
the selected patch as zeros.

• ImageNet [7]: ImageNet includes colored images of 1,000
classes. The training set has roughly 1.2M images, and the
validation set has 50,000 images. The default augmentation
randomly crops and resizes images to a size of 224 × 224,
and then horizontally flips it with a probability of 0.5. Sub-
sequently, it performs ColorJitter and PCA to the flipped im-
age [19].

C. Ablation Study
C.1. Case Study

In Figure 6, DivAug’s candidate images are obtained by only
applying the single transform Rotate with fixed probability pa-
rameter p (the magnitude parameter remains random). As shown
in Figure 6, Variance Diversity and model performance are highly
correlated.

Figure 6: The case study of applying single transformation
Rotate. To control Variance Diversity of augmented im-
ages, the fixed p is varied from 0.1 to 0.9.

C.2. Comparison between DivAug and the Random
Baseline

To check the effect of k-means++ in DivAug, we compare the
performance of Wide-ResNet-28-10 with DivAug and that with
the random baseline on CIFAR-10 and CIFAR-100 in Table 6.
For a fair comparison, the random baseline here randomly picks
four augmented images from eight candidates for training. Also,
the magnitude m and probability p are also randomly picked. As
shown in Table 6, DivAug is significantly better than the random
baseline.

D. Detailed Analysis For The Correlation be-
tween Variance Diversity and Generaliza-
tion

Recently, two measures, Affinity and Diversity, are introduced
in [11] for quantifying distribution shift and augmentation diver-
sity, respectively. Across several benchmark datasets and models,
it has been observed that the performance gain from data aug-
mentation can be predicted not by either of these alone but by
jointly optimizing the two [11]. Specifically, Affinity quantifies
how much a sub-policy shifts the training data distribution from
the original one. For a set of augmented data, our proposed diver-
sity measure is calculated based on the variance of their probabil-
ity vectors. Meanwhile, the diversity measure proposed in [11] is
defined as the training loss of a given model over the augmented
data. Below, we give the formal definition of Affinity and Loss
Diversity:



Table 5: Training hyperparameters of CIFAR-10, CIFAR-100 and ImageNet under the supervised settings. LR represents
learning rate, and WD represents weight decay. We do not specifically tune these hyperparameters, and all hyperparameters
are consistent with those reported in Adversarial AutoAugment [28].

Dataset Model Batch Size LR WD Epoch LR Schedule

CIFAR-10

Wide-ResNet-40-2 128 0.1 5e−4 200 cosine
Wide-ResNet-28-10 128 0.1 5e−4 200 cosine

Shake-Shake (26 2x96d) 128 0.2 1e−4 600 cosine
PyramidNet+ShakeDrop 128 0.1 1e−4 600 cosine

CIFAR-100
Wide-ResNet-40-2 128 0.1 5e−4 200 cosine

Wide-ResNet-28-10 128 0.1 5e−4 200 cosine
Shake-Shake (26 2x96d) 128 0.1 5e−4 1200 cosine

ImageNet ResNet-50 512 0.2 1e−4 120 cosine

Figure 7: The performance gain is positively correlated to Variance Diversity. Also, the Loss Diversity and Variance
Diversity are highly correlated. The marker size in the legend indicates the relative gain in test accuracy of different
methods. (a) The Loss Diversity and the Variance Diversity of augmented data generated by different methods. All points
lies near the diagonal of the Figure. In general, the relative gain in test accuracy increases with larger Variance Diversity (b)
The Affinity and Variance Diversity of augmented data generated by different methods.

Table 6: The performance of Wide-ResNet-28-10 with Di-
vAug and with the random baseline.

Dataset Method Accuracy

CIFAR10 Random (S = 4) 97.7± .1
DivAug 98.1± .1

CIFAR100 Random (S = 4) 83.3± .2
DivAug 84.2± .2

Definition 1 (Affinity [11]). Let Dtrain and Dval be training
and validation datasets drawn i.i.d. from the same clean data
distribution, and let D′

val be derived from Dval by applying a
stochastic augmentation strategy, a, once to each image in Dval,
D′

val = {(a(xi), y) : ∀(xi, y) ∈ Dval}. Further let m be a
model trained on Dtrain and A(m,D) denote the model’s accu-
racy when evaluated on dataset D. The affinity τ [a;m;Dval] is
defined as:

τ [a;m;Dval] = A(m,D′
val)−A(m,Dval) (7)

Definition 2 (Loss Diversity [11]). Let Dtrain be the training set,
and D′

train be the augmented training set resulting from applying
a stochastic augmentation strategy α. For a set of augmented data
S = {x′

i}, where x′
i is obtained by applying α to xi, stochasti-

cally. Further, given a model m which is trained on D′
train, let

L̂i be the training loss corresponding to x′
i. The Loss Diversity

between {x′
i}, Dloss({x′

i}), is defined as:

Dloss(S) = Ex′
i∈SL̂i

‡ (8)

As we analyzed, given a set of augmented data which has large
Variance Diversity, it is hard for models to give consist predictions
for them, which will result in a large training loss. Thus, Loss
Diversity and Variance Diversity are highly correlated. The main
difference between them is that Variance Diversity is a unsuper-
vised measure, i.e., Variance Diversity is not related to the label
information.

We further plot the performance gain from each augmentation
methods against the Affinity, Loss Diversity, and Variance Diver-

‡The original definition of Loss Diversity is defined for the entire train-
ing set. To make it comparable to Variance Diversity, we extend the con-
cept to a set of augmented data generated from a same original data xi.



sity of the augmented data generated by them in Figure 7. In
the legend, the marker size indicates the test accuracy of a Wide-
ResNet-40-2 model trained with different automated data augmen-
tation methods (The detailed results are shown in the first row of
Table 2). Figure 7 demonstrates the Loss Diversity and Variance
Diversity are highly correlated, which is consistent with our the-
oretical analysis. Following [11], we show the Affinity and Vari-
ance Diversity of augmented data generated by different methods
in Figure 7 (b). There is a clear trend that the Loss Diversity and
Variance Diversity contradict with the Affinity to some extent. We
remark that although RA has larger Variance Diversity than AA
and Fast AA, the performance gain from RA is smaller. According
to the hypothesis in [11], this can be explained by RA has smaller
Affinity than those of AA and Fast AA. In contrast, although Di-
vAug has the largest Variance Diversity, largest Loss Diversity,
and the smallest Affinity, DivAug performs best in terms of the
test accuracy. We hypothesize that there might exist a sweet spot
between the Diversity and Affinity, and how to achieve this sweet
spot is a interesting future direction for the automated data aug-
mentation methods.

E. Experiment Details
We list the details of training hyperparameters from the exper-

iments in Section 4.3 in Table 5.
For the semi-supervised learning experiment in Section 4.4, we

follow the settings in [24] and employ Wide-ResNet-28- 2 [26] as
the backbone model and evaluate UDA [24] with varied supervised
data sizes. For the experiments on CIFAR-10 with supervised data
size 1000, 2000, and 4000, the hyperparameters of them are iden-
tical as below: we train the backbone model for 200K steps. We
use a batch size of 32 for labeled data and a batch size of 448 for
unlabeled data. The softmax temperature τ is set to 0.4. The con-
fidence threshold β is set to 0.8. The backbone model is trained
by a SGD optimizer with learning rate of 1e−4, weight decay of
5e−4, and the nesterov momentum with the momentum hyperpa-
rameter set to 0.9. We remark that all hyperparameters are identi-
cal to those reported in [24], except two differences: we train the
backbone model for 200K steps instead of 500K, and we do not
apply Exponential Moving Average to the parameters of backbone
model.


