
In this supplement, we provide the following:

• Additional experimental details on datasets, model
training, and model editing (Section A).

• Additional evaluations of our method and additional
ablations. (Section B).

• Additional methods for shape editing. (Section C).

• A description of our user interface. (Section D).

• Additional visualizations of color edits with our ap-
proach (Section E).

• Additional visualizations of shape edits with our ap-
proach (Section F).

• Additional visualizations of color and shape swapping
edits with our approach (Section G).

• A visualization of reconstructions with our conditional
radiance field (Section H).

• Changelog (Section ??)

A. Additional Experimental Details

Dataset rendering details. For the PhotoShape dataset [51],
we use Blender [28] to render 40 views for each instance
with a clean background. To obtain the clean background,
we obtain the occupancy mask and set everywhere else to
white. For the Aubry chairs dataset [5], we resize the images
from 600×600 resolution to 400×400 resolution and take a
256×256 center crop. For the CARLA [17] dataset, we train
our radiance field on exactly the same dataset as GRAF [63].

Conditional radiance field training details. As in Milden-
hall et al. [45], we train two networks, a coarse network
Fcoarse to estimate the density along the ray, and a fine net-
work Ffine that renders the rays at test time. We use stratified
sampling to sample points for the coarse network and sam-
ple a hierarchical volume using the coarse network’s density
outputs. The rendered outputs of these networks for an in-
put ray r are given by Ĉcoarse(r) and Ĉfine(r), respectively.
The networks are jointly trained with the shape and color
codes to optimize a photometric loss. During each training
iteration, we first sample an object instance k ∈ {1, . . . ,K}
and obtain the corresponding shape code z(s)

k and color code
z
(c)
k . Then, we sample a batch of training rays from the

set of all rays Rk belonging to the instance k, and optimize
both networks using a photometric loss, which is the sum of
squared-Euclidean distances between the predicted colors

and ground truth colors,

Ltrain =

K∑
k=1

[∑
r∈Rk

||Ĉcoarse(r, z
(s)
k , z

(c)
k)− C(r)||22

+||Ĉfine(r, z
(s)
k , z

(c)
k)− C(r)||22

]
. (7)

When training all radiance field models, we optimize our
parameters using Adam [32] with a learning rate of 10−4,
β1 = 0.9, β2 = 0.999, and ε = 10−8. We train our models
until convergence, which on average is around 1M iterations.
Conditional radiance field editing details. During editing,
we keep the coarse network fixed and edit the fine network
Ffine only. We increase the learning rate to 10−2, and we
optimize network components and codes for 100 iterations,
keeping all other hyperparameters the same. To obtain train-
ing rays, we first randomly select an edited view of the
instance, then randomly sample batches of rays from the
subsampled set of foreground and background rays.
Conditional radiance field architecture details. Like the
original NeRF paper [45], we use skip connections in our
architecture: the shape code and embedded input points
are fed into the fusion shape network as well as the very
beginning of the network.

Furthermore, in our model architecture, we introduce a
bottleneck that allows feature caching to be computationally
feasible. The input to the color branch is an 8-dimensional
vector, which we cache during color editing.

Last, when injecting a shape or color code to a layer, we
run the code through a linear layer with ReLU nonlinearity
and concatenate the output with the input to the layer.
GAN editing details. In our GAN experiments, we use the
default StyleGAN2 [31] configuration on the PhotoShapes
dataset and train for 300,000 iterations. For model rewrit-
ing [8], we optimize the 8-th layer for 2,000 iterations with
a learning rate of 10−2.
View direction dependence. On the CARLA dataset [17,
63], we find that having only one training view per instance
can cause color inconsistency across rendered views. To ad-
dress this, we regularize the view dependence of the radiance
c with an additional self-consistency loss that encourages the
model to predict for a point x similar radiance across view-
ing directions d. This loss penalizes, for point x and viewing
direction d in the radiance field, the squared difference be-
tween the sampled radiance c(x,d) and the average radiance
of the point x over all viewing directions. Specifically, given
radiance field inputs x,d, we minimize

Ex∼px;d∼pd

[
‖c(x,d)− Ed′∼pd [c(x,d

′)‖2
]

where px is the probability distribution over points x and pd
is the probability distribution over all viewing directions d.

(a) Source Instance (b) Without Regularization (c) Ours

Figure 7: CARLA [17] dataset radiance view dependence regularization. We show synthesized views from an unregularized conditional
radiance field and a regularized conditional radiance field trained on one view per instance. Notice how the regularized model is consistent
in color across views while the unregularized model is not, hallucinating between green and blue (top) and purple and green (bottom).

During training, we approximate this loss by first sampling
a training point x and viewing direction d, then approximat-
ing the inner expectation Ed′∼pd [c(x,d

′)] by sampling K
viewing directions di ∼ pd, and taking

Ed′∼pd [c(x,d
′)] ≈ 1

K

K∑
i=1

c(x,di).

In our experiments, we use K = 64. We visualize results
with and without this regularization in Figure 7.

B. Additional Evaluations

SSIM metric. We report additional evaluation on model
ablation, color editing, and shape editing results using
SSIM [71]. Quantitative results can be found in this supple-
ment’s Table 4 (model ablation), Table 5 (color edits), and
Table 6 (shape edits).

Subsampling user constraints. During editing, we do not
train on the whole foreground and background regions pro-
vided by the user, which can potentially decrease the quality
of our edits. This is because training on fewer rays can cause
the edit to propagate onto unwanted areas. For example,
regions which the user specify as background, but are not in
the set of sampled rays, can potentially be changed. How-

ever, we find that upon adding this optimization, the average
PSNR over the three color edits decreases to 34.49.

Additional GAN editing baselines. We compare our edit-
ing method against a naive generator fine-tuning method [8].
The method is identical to the model rewriting method, ex-
cept instead of conducting a low-rank update of the weights
of a particular layer, we freely optimize all the weights of the
generator. This optimization is done over 10,000 steps with
a learning rate of 10−3. We report our results in Table 5.

C. Additional Shape Editing Methods

Shape removal. For shape removal method described in the
main paper, we assume that there is nothing behind an object
part that a user scribbles over, allowing us to replace the
object part with a white background. However, in practice,
a user may wish to remove an object part that is in front
of another one. To handle such occlusion, we propose a
separate procedure: for each ray in the foreground mask,
we zero out the first mode of density along the ray. We
define the first mode of density to start at the first point with
nonzero-density up to the first subsequent point with zero
density. We find that this procedure is effective but can be
slow and may leave artifacts of incomplete removal.

Shape addition. For shape addition, our method for recon-

PhotoShapes [51] Aubry et al. [5]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
1) Single NeRF [45] 17.81 0.836 0.435 14.26 0.814 0.390
2) + Learned Latent Codes 36.50 0.979 0.029 20.93 0.892 0.164
3) + Sep. Shape/Color Codes 36.88 0.980 0.028 21.54 0.898 0.144
4) + Shar./Inst. Net (Ours) 37.67 0.982 0.022 21.78 0.900 0.141
5) NeRF Separate Instances 37.31 0.972 0.035 24.15 0.963 0.041

Table 4: Conditional radiance field ablation study. We evaluate our model and several ablations on novel view synthesis. Notice how
separating the shape and color codes and using the shared/instance network improves the view synthesis quality.

PSNR ↑ SSIM ↑ LPIPS ↓
GAN-Finetuning 19.64 0.704 0.255
Model Rewriting [8] 18.42 0.622 0.325
Finetuning Single-Instance NeRF 29.53 0.955 0.068
Only Finetune Color Code 26.29 0.968 0.090
Finetuning All Weights 31.00 0.957 0.050
Our Method 35.25 0.977 0.027

Table 5: Color editing quantitative results. We evaluate color
editing of a source object instance to match a target instance. Our
method outperforms the baselines on all criteria.

PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) ↓
Only Finetune Shape Code 22.08 0.931 0.119 36.9
Only Finetune Fdens 21.84 0.921 0.118 27.2
Finetuning All Weights 20.31 0.910 0.117 66.4
Our Method 24.57 0.944 0.081 37.4

Table 6: Shape editing quantitative results. Notice how our hy-
brid network update approach achieves high visual edit quality
while balancing computational cost.

structing a composite image leads to effective but slow edits.
We propose an additional density-based loss which is faster
but less effective in executing the edit. The method for ob-
taining the editing example is the same, but we now optimize
a loss that encourages the density values in the modified re-
gions of the composite view to match with the density values
of the regions copied from.

Specifically, let yf = {(r, σf)} be the set of rays and
densities in the foreground mask and yb = {(r, σb)} be the
set of rays and densities in the background mask. Here, σf
are density values of the rays copied from the new object
instance, and σb represent density values of the rays from
the original instance. Furthermore, let σr be the densities
predicted by our model for ray r. Again, densities are nor-
malized to sum to one.

We optimize a cross-entropy loss:

Ldens =
∑

(r,σf)∈yf

−σTf log σr +
∑

(r,σb)∈yb

−σTb log σr, (8)

which encourages the predicted densities to match the target
densities for the edited regions and be unchanged for the
unedited regions.

D. User Interface
For our user interface, the user first picks an object in-

stance they would like to edit. Our UI then displays several

rendered views of that instance, and the user picks one view
to edit. The user can then edit the selected view on an editing
panel.

We provide four types of user edits: color edits, shape
removal, shape addition, and color/shape transfer. Next, we
describe the user interactions for each type of edit.

Color edits. The user chooses the target color from a color
palette. Then, the user specifies a foreground mask over
the view by clicking the edit color button, selecting a
brush color, and scribbling over parts of the object. Last, the
user specifies the background mask by clicking the BG brush
and scribbling over where they would like to keep the part
unchanged.

Shape removal. The user clicks the remove shape but-
ton and scribbles over parts of the image they would like to
remove.

Shape addition. The user clicks the add shape button
and several instances to copy shape from will pop up. The
user specifies a target instance they would like to copy from,
and a view of that instance is shown. Then, the user scribbles
over the object part they would like to copy, and clicks on
the location of the source instance where they would like to
paste.

Shape/Color transfer. The user clicks either the
transfer color button or the transfer shape but-
ton and several instances to transfer color/shape from will
pop up. Then, the user clicks a desired target instance to
transfer color/shape information.

Once the user editing is done, the user will click the
execute button to execute the desired edit. Our algorithm
will then finetune the latent variables and network weights
and update the renderings of the edited object. Please see
our video demo for more details.

E. Additional Color Edits

Quantitative color editing evaluation. In this section, we
provide the visualizations of all three color edits used for
evaluation in the main paper. Visually, we again see that
editing a single-instance NeRF leads to visual artifacts and
visual inconsistencies across views. Similarly, GAN-based
methods are unable to learn an edit that generalizes across

Figure 8: Color editing qualitative results. We visualize color editing results where the goal is to match a source instance’s colors to a
target. Our method accurately captures the colors of the target instance given scribbles over one view. Notice how (d) Rewriting a GAN [8]
fails to propagate the edit to unseen views and results in unrealistic generated outputs. Moreover, editing a single-instance NeRF causes
visual floating artifacts (Edit 1) and non-transferring colors (Edit 3).

Edit 1 Edit 2 Edit 3

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

GAN-Finetuning 21.42 0.744 0.218 20.45 0.730 0.264 18.91 0.686 0.251
Model Rewriting 20.44 0.663 0.301 19.11 0.659 0.322 18.03 0.612 0.315
Finetuning Single-Instance NeRF 28.22 0.933 0.125 28.32 0.956 0.057 29.88 0.964 0.051
Only Finetune Color Code 28.15 0.975 0.054 27.77 0.977 0.097 22.95 0.953 0.120
Finetuning All Weights 33.36 0.970 0.029 32.47 0.967 0.036 27.17 0.936 0.086
Our Method 35.32 0.978 0.024 35.72 0.979 0.027 34.72 0.975 0.031

Table 7: Color editing quantitative results. We evaluate color editing of a source object instance to match a target instance. Please refer to
Figure 8 (this supplemental) for a visualization of each of the edits. Notice that our method outperforms the baselines for all color edits on
all criteria.

views, likely due to their lack of a 3D representation. We
visualize the results of the three edits in Figure 8 and quantify
them in Table 7.

In Figure 8, the first two rows visualize Edits 1 and 2
discussed in the main paper, and are identical to the visu-
alizations in the main paper’s Figure 3. The last row of
Figure 8 visualizes Edit 3, which changes the seat of a chair
from brown to green, then the chair back from beige to grey.

In Table 7, we quantify the quality of each of the four
edits. The first two main columns correspond to the Edits 1
and 2 discussed in the main paper, while the last two main
columns correspond to Edits 3 discussed in Section E.

Editing an unseen instance. The source instances we edit

(a) Editing Scribble (b) Edited Views

Figure 9: Unseen instance editing. Our method finetunes and
edits an unseen test set instance.

in the paper are in the training set. Here, we additionally
find that our method succeeds at editing an unseen source
instance in the test set, which we show in Figure 9. We first
finetune our conditional radiance field on a single view of a
test set instance using the optimization method for finetuning
on real images, and use our editing method to change the
color of the instance.

Color editing additional ablations. In this section, we
evaluate our color editing method and several ablations on
10 edits. We report mean and standard errors in Table 8.
Notice how our method reliably outperforms all ablations.

Single-instance NeRF editing. We also provide an addi-
tional comparison of our method against editing a single-
instance NeRF. Here, we change the color of a seat from
brown to bright red. Again, we observe that the single-
instance NeRF does not learn an edit that generalizes; the
model frequently creates red artifacts in chair’s background.
In contrast, our model can still learn an edit that successfully
propagates to the seat but not to other regions of the scene.
We visualize these results in Figure 10.

Additional color editing results. We visualize additional
color edits on the Aubry chairs [5] and the CARLA cars [17,
63] datasets in Figure 11.

F. Additional Shape Edits

Quantitative shape editing evaluation. In this section, we
visualize all three shape edits used for evaluation in the main
paper. We visualize the results of the three edits in Figure 12
and quantify them in Table 9. Visually, we see that consistent
with the main paper, both finetuning the shape code and the
shape branch are not enough to change the instance, but
finetuning the whole network causes unwanted changes in
the instance.

Shape editing additional ablations. In this section, we
evaluate our shape editing method and several ablations on
10 edits. We report mean and standard errors in Table 10.
Notice how our method reliably outperforms all ablations.

Single-instance NeRF editing. We compare our method
against editing a single-instance NeRF [45]. We find that
similar to the case with color edits, single-instance NeRFs
are unable to learn an edit that generalizes to unseen views,
likely due to a lack of a category-level prior. We visualize
these results on the PhotoShapes dataset [51] in Figure 13.

Additional shape editing results. We visualize additional
shape edits on the PhotoShapes [51] and the CARLA cars
datasets [17, 63] in Figure 14.

G. Additional Color/Shape Swapping Edits
We visualize additional shape and color swapping results

on the PhotoShapes dataset [51] in Figure 15 (this supple-
ment). Notice again how changing the color code keeps
the shape of the instance unchanged, and how changing the
shape code keeps the color of the instance unchanged.

H. View Reconstruction

View consistency results. For each of our three datasets, we
visualize synthesized views for a fixed instance and observe

that the rendered views are all consistent in shape and color.
We visualize these results in Figure 16. Notice how in the
CARLA dataset [17, 63], despite training on only one image
per car instance, the model is able to infer the occluded
regions of the car.
Additional reconstruction results. We visualize recon-
structed views and depth maps across several instances of
the PhotoShapes dataset [51] using our conditional radi-
ance field. For each instance, we render four unseen view-
points from our model and visually compare them against
the ground truth views. We find that our method is able to
almost perfectly reconstruct each instance, as well as learn
convincing depth estimates of each instance. We visualize
reconstructions and depth maps for unseen views in Figures
17-21.

PSNR ↑ SSIM ↑ LPIPS ↓
Finetuning Single-Instance NeRF 29.84± 2.15 0.959± 0.008 0.095± 0.008
Only Finetune Color Code 31.19± 1.55 0.968± 0.004 0.090± 0.005
Finetuning All Weights 26.29± 0.82 0.965± 0.005 0.042± 0.006
Our Method 35.15± 0.95 0.976± 0.002 0.030± 0.002

Table 8: Color editing quantitative results. We evaluate color editing of a source object instance to match a target instance. We report
means and standard errors over 10 edits. Our method consistently outperforms the baselines on all criteria.

Single Instance

Our Method

Source Editing Scribble

Figure 10: Single-instance vs. conditional radiance field editing. We visualize the edit of changing the color of a seat from brown to
red. We find that edits on single-instance NeRFs propagate to outside the chair and cause artifacts in the background, whereas our model
successfully propagates the edit across only the seat of the chair.

Edit 1 Edit 2 Edit 3

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Only Finetune Shape Code 23.52 0.947 0.100 20.18 0.919 0.138 22.52 0.927 0.118
Only Shape Branch 24.59 0.947 0.090 17.96 0.887 0.160 22.94 0.929 0.104
Finetuning All Weights 21.31 0.923 0.100 19.77 0.903 0.128 19.84 0.903 0.123
Our Method 25.68 0.958 0.069 22.97 0.933 0.091 25.04 0.943 0.083

Table 9: Shape editing quantitative results. We evaluate shape editing of a source object instance to match a target instance. Please refer
to Figure 12 for a visualization of each of the edits. Notice that our method outperforms the baselines for all color edits on all criteria.

Figure 11: Additional color editing qualitative results. Our method successfully colors the seats of two Aubry et al. chairs [5] to red, and
changes the car body colors to red and pink.

(a) Source (b) Editing Scribble (c) Shape Code Only (d) Density Network Only (e) Whole Network (f) Ours

Figure 12: Shape editing quantitative results. Notice how only optimizing the shape code or branch are unable to fit both edits. Optimizing
the whole network is slow and causes unwanted changes in the instance.

PSNR ↑ SSIM ↑ LPIPS ↓
Only Finetune Shape Code 21.22± 0.62 0.922± 0.007 0.125± 0.006
Only Finetune Fdens 21.84± 0.83 0.921± 0.007 0.118± 0.009
Finetuning All Weights 19.53± 0.32 0.903± 0.003 0.129± 0.005
Our Method 23.69± 0.76 0.934± 0.007 0.084± 0.007

Table 10: Shape editing quantitative results. We evaluate shape editing of a source object instance to match a target instance. We report
means and standard errors over 10 edits. Our method consistently outperforms the baselines on all criteria.

Figure 13: Shape editing qualitative results. Our method successfully removes the arms and fills in the hole of a chair. Notice how only
optimizing the shape code or branch are unable to fit both edits. Furthermore, editing a single instance NeRF [45] causes unwanted artifacts.

Figure 14: Shape editing qualitative results. Our method successfully removes the back and arms of a chair and removes the car mirrors.

Target Shape CodeTarget Color Code

So
ur

ce
 In

st
an

ce

Figure 15: Shape and color transfer results. Our model transfers the shape and color from target instances to a given source instance.
Notice that when a source’s color code is swapped with a target’s, the shape remains unchanged, and vice versa.

Reconstructed View Novel Views Novel Views Novel ViewsReconstructed View Reconstructed View

Figure 16: View reconstruction results. Our method renders realistic and consistent views across several instances using a single model.

Depth Map

Ground Truth

Reconstructions

Depth Map

Ground Truth

Reconstructions

Figure 17: View reconstruction and depth prediction. We visualize the rendered views and predicted depth maps of our model on four
unseen viewpoints. Notice our model is able to almost perfectly reconstruct the ground truth views.

Depth Map

Ground Truth

Reconstructions

Depth Map

Ground Truth

Reconstructions

Figure 18: View reconstruction and depth prediction. We visualize the rendered views and predicted depth maps of our model on four
unseen viewpoints. Notice our model is able to almost perfectly reconstruct the ground truth views.

Depth Map

Ground Truth

Reconstructions

Depth Map

Ground Truth

Reconstructions

Figure 19: View reconstruction and depth prediction. We visualize the rendered views and predicted depth maps of our model on four
unseen viewpoints. Notice our model is able to almost perfectly reconstruct the ground truth views.

Depth Map

Ground Truth

Reconstructions

Depth Map

Ground Truth

Reconstructions

Figure 20: View reconstruction and depth prediction. We visualize the rendered views and predicted depth maps of our model on four
unseen viewpoints. Notice our model is able to almost perfectly reconstruct the ground truth views.

Depth Map

Ground Truth

Reconstructions

Depth Map

Ground Truth

Reconstructions

Figure 21: View reconstruction and depth prediction. We visualize the rendered views and predicted depth maps of our model on four
unseen viewpoints. Notice our model is able to almost perfectly reconstruct the ground truth views.

