
Influence Selection for Active Learning: Supplementary Material

In this supplementary material, we provide additional
details which we could not include in the main paper due
to space constraints. The material is composed as follows:

1. The derivation of the influence of untrained samples.

2. The implementation details of stest calculation.

3. The time complexity analysis.

4. The implementation details of comparing methods.

5. Additional experiments on CIFAR10 dataset and
COCO dataset.

6. The tables in which we report the average performance
for each plot.

1. The Derivation of the Influence of Untrained
Samples

Newton Step and Quadratic Approximation. As-
suming that we have labeled dataset Li and loss func-
tion L(θ) = 1

n

∑
z∈Li

l(z, θ). After training a model
on Li, we have the model parameters θ̂ ∈ Θ, where
θ̂ = arg min θ∈Θ

1
n

∑
z∈Li

l(z, θ). Our purpose is to
estimate the parameters of model which is trained on Li
and the new added sample z

′
. The new loss function is

Lz′ (θ) = 1
n+1

∑
z′∪Li

l(z, θ), giving new trained model
parameter θ̂z′ = arg min θ∈Θ

1
n+1

∑
z′∪Li

l(z, θ).
Considering the quadratic approximation of the Lz′ (θ̂z′ )

Lz′ (θ̂z′ ) = Lz′ (θ̂) + (θ̂z′ − θ̂)
T∇θLz′ (θ̂)+

1

2
(θ̂z′ − θ̂)

T∇2
θLz′ (θ̂)(θ̂z′ − θ̂)

(1)

If the H−1

θ̂
is positive definite, the quadratic approximation

is minimized at

θ̂z′ − θ̂ = −∇θLz
′ (θ̂)

∇2
θLz′ (θ̂)

= −[∇2
θLz′ (θ̂)]

−1[∇θLz′ (θ̂)]
(2)

Thus, the quadratic approximation of θ̂z′ is equal to θ̂ −
[∇2

θLz′ (θ̂)]−1[∇θLz′ (θ̂)], and −[∇2
θLz′ (θ̂)]−1[∇θLz′ (θ̂)]

is the newton step.

Evaluate the Influence of an Untrained Sample. First
we add a small influence from z

′
to the loss function L(θ),

the new loss function is

Lε,z′ (θ) = arg min θ∈Θ
1

n

∑
z∈Li

l(z, θ) + εl(z
′
, θ)

= L(θ) + εl(z
′
, θ)

(3)

With new loss function, the model new parameters is ob-
tained θ̂ε,z′ = arg min θ∈Θ Lε,z′ (θ). We evaluate a sam-

ple z
′

importance by calculating the
d θ̂ε,z′

d ε

∣∣∣∣∣
ε=0

From equation 2 we know that

θ̂ε,z′ − θ̂ =− [∇2
θLε,z′ (θ̂)]

−1[∇θLε,z′ (θ̂)]

=− [∇2
θL(θ̂) + ε∇2

θl(z
′
, θ̂)]−1

[∇θL(θ̂) + ε∇θl(z
′
, θ̂)]

(4)

Since θ̂ minimizes L(θ), ∇θL(θ̂) is equal to 0. Dropping
the O(ε2) terms, we have

θ̂ε,z′ − θ̂ ≈ −[∇2
θL(θ̂)]−1ε∇θl(z

′
, θ̂) (5)

We define H−1

θ̂

def
= [∇2

θL(θ̂)]−1, and we have

θ̂ε,z′ − θ̂ ≈ −H
−1

θ̂
ε∇θl(z

′
, θ̂) (6)

Thus, we can evaluate a untrained sample by:

d θ̂ε,z′

d ε

∣∣∣∣∣
ε=0

=
θ̂ε,z′ − θ̂

ε

∣∣∣∣∣
ε=0

=
−εH−1

θ̂
∇θl(z

′
, θ̂)

ε

∣∣∣∣∣
ε=0

= −H−1

θ̂
∇θl(z

′
, θ̂)

(7)

2. The Implementation Details of stest Calcula-
tion

To evaluate an untrained unlabeled sample, I(z
′
, R) =

−∇θl(R, θ̂)TH−1

θ̂
Gz′ needs to be calculated. However,

it’s impossible to calculate the inverse matrix of the Hes-
sian matrix due to the memory constrain of GPU and the



time complexity, especially for the deep neural network. We
use the method proposed by Agarwal [1] to effectively ap-

proximate the stest
def
= H−1

θ̂
∇θl(R, θ̂) and then calculate

I(z
′
, R) = −stest ·Gz′ for each samples.

Dropping the θ̂ subscript for clarity, we define

H−1
j

def
=
∑j
i=0(I −H)i (8)

as the first j terms in the Taylor expansion of H−1. When
j →∞, we have H−1

j → H−1.
From equation 8, we have

H−1
j = I + (I −H)H−1

j−1 (9)

The key idea of stochastic estimation is that we can sub-
stitute the full H in equation 9 with the any unbiased esti-
mator of H to form H̃j . Since E[H̃−1

j ] = H−1
j , we still

have E[H̃−1
j ] = H−1, when j → ∞. In practice, we can

randomly sample zi and use ∇2
θl(zi, θ̂) as the unbiased es-

timator of H . Algorithm 1 shows how we approximate the
stest.

Algorithm 1 The calculation of stest

1: Input: v = ∇θl(R, θ̂)
2: Random sample k images {z1, z2, · · · , zk} from la-

beled dataset
3: initial the stest0 = v
4: for i in range(1, k + 1) do
5: stesti = v + (I −∇2

θl(zi, θ̂))stesti−1

6: end for
7: take the stestk as the unbiased estimator of stest
8: Return stest

In practice, we calculate the Hessian-vector products of
∇2
θl(zi, θ̂)stesti−1

instead of calculating the Hessian matrix
∇2
θl(zi, θ̂). We will repeat the algorithm 1 p times, and use

the averaged result as the final estimation of stest.

3. The Time Complexity Analysis

As demonstrated in Section 2, our method can be di-
vided into two sections. First, instead of directly calcu-
late the H−1

θ̂
, we sample images from the labeled dataset

to calculate the stest, which is the stochastic estimation of
∇θl(R, θ̂)TH−1

θ̂
. Since the number of sampled images is

fixed, the time complexity is a constant C. Then, we cal-
culate the influence for each unlabeled sample with stest.
Noted that |U | = n, the time complexity is O(n).

4. The Implementation Details of Comparing
Methods

4.1. Image Classification

For coreset sampling [7], we follow [9] and imple-
ment the K-Ceter-Greedy algorithm, which is just slightly
worse than the mixed-integer program but much less time-
consuming. We run the algorithm by using the feature be-
fore the classification layer as [7] reported. For the learn-
ing loss sampling, we connect the learning loss module to
each block of ResNet-18, stopping the loss prediction mod-
ule gradient from back-propagating to the model after 120
epochs, and set the λ to 1 as [9] do. We first randomly select
a subset with 10000 images from unlabeled samples before
predicting the loss and selecting the image with the largest
predicted loss.

4.2. Object Detection

For coreset sampling, we implement the K-Ceter-Greedy
algorithm. We apply global average pooling on the fea-
ture after the regression branch and the classification branch
of FCOS [8], then we concatenate the features from both
branches and use this to run the algorithm. We also tried
using the feature from the Feature Pyramid Network(FPN)
of FCOS to run the algorithm, but it does not perform better.

For the learning loss sampling, we use the 5 feature maps
from the FPN of FCOS. We stopping the loss of the loss
prediction module from back-propagating to the backbone,
otherwise, the detector performance would deteriorate sig-
nificantly. We set the λ to 1.

For localization stability sampling [4], we implement the
Localization Stability method in the paper, since its perfor-
mance is evaluated on both VOC2012 [3] and COCO [5]
datasets.

4.3. Large Scale Experiment in Object Detection

All the implementation details of the comparing methods
are exactly the same as 4.2

5. Additional Experiments

5.1. Image Classification

In this section, we provide additional experiments on im-
age classification with CIFAR10 in large scale active learn-
ing setting.

Active Learning Settings. For the experiments on CI-
FAR10, we randomly select 5000 images from the unla-
beled set as the initial labeled dataset, and in each of the
following steps, we add 5000 images to the labeled dataset.
The simulate 10 active learning steps and stop the active
learning iteration. All other implementation details are ex-
actly the same as we described in the main paper.
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Figure 1: Result for CIFAR10 in large-scale active learning
setting.
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Figure 2: Result for COCO with Faster R-CNN.

Results. The results on CIFAR10 with large-scale ac-
tive learning setting are shown in Figure 1. Our proposed
method outperforms all comparing methods before step 6.
Our implementation shows that both our method and core-
set sampling achieve the best performance at step 5, and
the performance of the trained model deteriorates when we
keep enlarging the labeled dataset. In practice, it is not nec-
essary to continue the active learning iteration after step 5.
This phenomenon indicates that, when using the ResNet-18
as the classifier and using the test set of CIFAR10 as the
benchmark to evaluate the model performance, some im-
ages in the training set of CIFAR10 provide a negative in-
fluence on the model’s performance. Active learning algo-
rithm does help trained model to achieve better performance
with fewer annotations.

5.2. Object Detection

In this section, we provide additional experiments on ob-
ject detection with the COCO dataset.

Active Learning Settings. We randomly select 5000 im-
ages from the unlabeled set first and add 1000 images in the
following steps. Since the number of bounding boxes se-
lected by different methods has huge differences, for clearer
comparison, we continue the active learning iteration until
the trained model achieves 22± 0.3% in AP.

Target Model. We use Faster R-CNN [6] detector with
backbone ResNet-50 implemented in mmdetection [2] to
verify our method. We train the model for 12 epochs with
the mini-batch size of 8 and the initial learning rate of 0.01.
After training 8 and 11 epochs, we decrease the learning rate
by 0.1 respectively. The momentum and the weight decay
are 0.9 and 0.0001 respectively.

Implementation Details. When calculating the influ-
ence of the unlabeled data, we backpropagate the loss to
the parameters in the last convolution layer for regression
and classification in Region Proposal Network(RPN), and
to fully connected layer for regression result and classifi-
cation result in Region of Interest Network(RoI) of Faster
R-CNN. We use the validation set as reference set. When
calculating the stest, we random sample at most 500 im-
ages from the labeled set. We repeatedly calculate the stest
4 times and use the value after averaging. We compare
our method with random sampling and localization stability
sampling [4], which can be implemented in Faster R-CNN
easily. For localization stability sampling [4], we imple-
ment the Localization Stability method in the paper.

Results. The results on Faster R-CNN are shown in Fig-
ure 2. When achieving 21.8 in AP, our method cost 7.1k
fewer bounding boxes than random sampling, saving 10.4%
annotations. This result shows that our method can be ef-
fective in both one-stage and two-stage detectors. It further
substantiates that our method is task-agnostic and model-
agnostic.

6. The Experiment Results
Table 1 and table 2 show the experiment results on the

image classification of the main paper. Table 3 shows the
experiment result of Section 5.1 in supplementary material.

Table 4, table 5 and table 6 show the experiment results
on the object detection of the main paper. Table 7 shows the
experiment result of Section 5.2 in supplementary material.
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Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 45.51799931 54.86599902 67.72399840 76.69599825 81.23799817
coreset 45.51799931 58.29599852 67.65599847 75.99799808 79.93399816
random 45.51799931 58.40199852 67.44199847 72.30399829 77.86199819

learningloss 45.91599973 58.88999852 69.14799823 75.80599807 80.11599825

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 83.61199812 85.95799826 88.05599827 89.26399810 89.95799797
coreset 81.53599801 85.36399841 87.19999817 88.61399807 89.05199809
random 81.93599806 83.05799810 84.75199825 86.45999833 87.28999833

learningloss 82.25999810 84.46999836 85.10199790 86.66799833 87.07999842
Table 1: The experiment result on CIFAR10 with ResNet-18.

Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 36.97799921 42.69599870 45.82199922 50.78799950 53.40799696
coreset 36.97799921 43.06599873 46.78799956 50.53399960 53.17999910
random 36.97799921 41.70599863 46.59999991 49.17400009 52.11799930

learningloss 34.06799937 38.06399904 44.43599916 45.98999956 48.60199980

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 56.45799872 58.26799854 59.87199865 61.7459986 63.37799866
coreset 56.02399869 58.10799861 59.32599477 61.24399836 62.70399857
random 53.43599904 56.11799880 58.47799854 60.21399841 61.22999834

learningloss 52.50199925 53.82599889 55.67399864 57.63399866 59.55999863
Table 2: The experiment result on CIFAR100 with ResNet-18.

Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 77.48999786 89.33399824 92.19199778 93.55399844 94.27999855
coreset 77.48999786 88.25799831 92.00199783 93.46399852 94.20599862
random 77.48999786 87.05999821 90.03599803 91.70399761 92.44999793

learningloss 60.66199856 72.72399856 77.17199846 80.43999806 83.08399811

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 94.15999845 93.89199833 93.80199861 93.68999855 93.54599838
coreset 94.15399850 94.16999856 94.02599862 93.66199836 93.24799830
random 92.66799801 92.97199826 93.04599803 93.65399836 93.53199820

learningloss 84.17599796 84.85199794 85.39199788 85.36999783 85.04999776
Table 3: The experiment result on CIFAR10 in large-scale setting with ResNet-18.
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Method 3 times average of results in each step
1 2 3 4 5

ISAL
mAP 0.02366667 0.12766667 0.24633333 0.32366667 0.42

bbox num 1338 2777.66667 3606.66667 4446 5616
10k × mAP / bbox num 0.17688092 0.45961839 0.68299445 0.72799520 0.74786325

Coreset
mAP 0.02366667 0.13 0.25733333 0.38466667 0.459

bbox num 1338 2624.66667 4149.33333 5736.66667 7292.66667
10k × mAP / bbox num 0.17688092 0.49530099 0.62017995 0.67054038 0.62939940

Random
mAP 0.02366667 0.11666667 0.24133333 0.342 0.43666667

bbox num 1338 2683.66667 4097.66667 5450.66667 6833.66667
10k × mAP / bbox num 0.17688092 0.43472861 0.58895306 0.62744618 0.63899322

Learningloss
mAP 0.023 0.13 0.25233333 0.35933333 0.42433333

bbox num 1338 2780.66667 4161.66667 5627 7236
10k × mAP / bbox num 0.17189836 0.46751379 0.60632759 0.63858776 0.58641975

Localization stability
mAP 0.02366667 0.136 0.243 0.33233333 0.4245

bbox num 1338 2713.33333 3940.66667 5653 7601.66667
10k × mAP / bbox num 0.17688092 0.50122850 0.61664693 0.58788844 0.55843017

Method 3 times average of results in each step
6 7 8 9 10

ISAL
mAP 0.47166667 0.515 0.55233333 0.57666667 0.596

bbox num 7190.33333 8703.66667 10160 11503 12967.6667
10k × mAP / bbox num 0.65597330 0.59170465 0.54363517 0.50131850 0.45960466

Coreset
mAP 0.51033333 0.552 0.57666667 0.59666667 0.604

bbox num 8812 10286.3333 11635 12888.3333 14194.3333
10k × mAP / bbox num 0.57913451 0.53663437 0.49563100 0.46295099 0.42552192

Random
mAP 0.4845 0.53533333 0.56133333 0.57866667 0.595

bbox num 8188.33333 9575.66667 11011.6667 12426 13813
10k × mAP / bbox num 0.59169550 0.55905594 0.50976237 0.46569022 0.43075364

Learningloss
mAP 0.49566667 0.54866667 0.566 0.58266667 0.59866667

bbox num 8752.33333 10368 11750 12981.6667 14119.3333
10k × mAP / bbox num 0.56632517 0.52919239 0.48170213 0.44883811 0.42400491

Localization stability
mAP 0.46533333 0.52766667 0.55933333 0.59 0.60466667

bbox num 9169.66667 11056.3333 12580 13853.6667 14843.6667
10k × mAP / bbox num 0.50747028 0.47725286 0.44462109 0.42588003 0.40735667

Table 4: The experiment result on VOC2012 with FCOS.
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Method 3 times average of results in each step
1 2 3 4 5

ISAL
AP 0.12833333 0.14433333 0.153 0.16233333 0.166

bbox num 36603.6667 37934 40028.3333 42021 43947.3333
10k × AP / bbox num 0.03506024 0.03804854 0.03822293 0.03863148 0.03777249

Coreset
AP 0.12833333 0.15266667 0.17333333 0.18766667 0.19833333

bbox num 36603.6667 47194 57032.3333 66384.3333 75564.3333
10k × AP / bbox num 0.03506024 0.03234875 0.03039212 0.02826972 0.02624695

Random
AP 0.12833333 0.15033333 0.16566667 0.17733333 0.188

bbox num 36603.6667 44055.6667 51381.3333 58653.6667 66240
10k × AP / bbox num 0.03506024 0.03412350 0.03224258 0.03023397 0.02838164

Learningloss
AP 0.127 0.147 0.163 0.17766667 0.185

bbox num 36603.6667 62127.6667 84566.3333 105900.333 126722.333
10k × AP / bbox num 0.03469598 0.02366096 0.01927481 0.01677678 0.01459885

Localization stability
AP 0.12833333 0.149 0.16566667 0.179 0.191

bbox num 36603.6667 47503.3333 58252.6667 69085.6667 79574.6667
10k × AP / bbox num 0.03506024 0.03136622 0.02843933 0.02590986 0.02400261

Method 3 times average of results in each step
6 7 8 9 10

ISAL
AP 0.172 0.18666667 0.18333333 0.189 0.19133333

bbox num 45810 47864.6667 49865 51930.6667 54414.3333
10k × AP / bbox num 0.03754639 0.03899884 0.03676594 0.03639468 0.03516230

Coreset
AP 0.20933333 0.21766667 N/A N/A N/A

bbox num 84924 94075.6667 N/A N/A N/A
10k × AP / bbox num 0.02464949 0.02313740 N/A N/A N/A

Random
AP 0.199 0.20533333 0.21433333 0.22 N/A

bbox num 73457 80720.6667 88030.6667 95464.3333 N/A
10k × AP / bbox num 0.02709068 0.02543752 0.02434758 0.02304526 N/A

Learningloss
AP 0.19433333 0.20233333 0.21166667 0.21766667 N/A

bbox num 145197 163798 181040.333 197804 N/A
10k × AP / bbox num 0.01338412 0.01235261 0.01169169 0.01100416 N/A

Localization stability
AP 0.2 0.20866667 0.217 N/A N/A

bbox num 89557.3333 99480.6667 109179.333 N/A N/A
10k × AP / bbox num 0.02233206 0.0209756 0.01987556 N/A N/A

Method 3 times average of results in each step
11 12 13 14 15

ISAL
AP 0.19466667 0.197 0.20233333 0.207 0.20933333

bbox num 56457 59059 61677 64093.3333 66729
10k × AP / bbox num 0.03448052 0.03335647 0.03280531 0.03229665 0.03137067

Method 3 times average of results in each step
16 17 18 19 20

ISAL
AP 0.21 0.21133333 0.216 0.21633333 0.218

bbox num 69402 72282.3333 74690 77545.6667 80139
10k × AP / bbox num 0.03025849 0.02923720 0.02891953 0.0278975 0.02720274

Table 5: The experiment result on COCO with FCOS.
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Method Results in each step
1 2 3 4 5

ISAL
AP 0.212 0.25 0.275 0.291 0.305

bbox num 86838 118762 169688 232923 286589
10k × AP / bbox num 0.02441328 0.02105050 0.01620621 0.01249340 0.01064242

Coreset
AP 0.212 0.273 0.305 0.321 0.334

bbox num 86838 201072 307552 413095 510927
10k × AP / bbox num 0.02441328 0.01357723 0.00991702 0.00777061 0.00653714

Random
AP 0.212 0.264 0.294 0.309 0.322

bbox num 86838 173507 259539 345013 430922
10k × AP / bbox num 0.02441328 0.01521552 0.01132778 0.00895618 0.00747235

Learningloss
AP 0.212 0.271 0.3 0.319 0.33

bbox num 86838 291934 426039 532231 609475
10k × AP / bbox num 0.02441328 0.00928292 0.00704161 0.00599364 0.00541450

Localization stability
AP 0.212 0.271 0.296 0.314 0.327

bbox num 86838 194677 289580 385590 485663
10k × AP / bbox num 0.02441328 0.01392049 0.0102217 0.00814337 0.00673306

Method Results in each step
6 7 8 9 10

ISAL
AP 0.322 0.331 0.347 0.354 0.363

bbox num 351747 449780 579039 719234 860001
10k × AP / bbox num 0.00915431 0.00735915 0.00599269 0.00492190 0.00422093

Coreset
AP 0.344 0.351 0.355 0.36 0.364

bbox num 601362 680853 748513 806205 860001
10k × AP / bbox num 0.00572035 0.00515530 0.00474274 0.00446537 0.00423255

Random
AP 0.332 0.343 0.349 0.356 0.362

bbox num 516689 602084 688451 774142 860001
10k × AP / bbox num 0.00642553 0.0056969 0.00506935 0.0045986 0.00420930

Learningloss
AP 0.338 0.35 0.35 0.358 0.361

bbox num 668558 713657 751218 805063 860001
10k × AP / bbox num 0.00505566 0.00490432 0.0046591 0.00444686 0.00419767

Localization stability
AP 0.339 0.344 0.348 0.358 0.36

bbox num 583831 674087 744716 801876 860001
10k × AP / bbox num 0.00580648 0.00510320 0.00467292 0.00446453 0.00418604

Table 6: The experiment result on COCO in large-scale setting with FCOS.
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Method 3 times average of results in each step
1 2 3 4 5

ISAL
AP 0.17233333 0.18266667 0.19066667 0.19766667 0.203

bbox num 36603.6667 40120.3333 43547.3333 46840.6667 50633.3333
10k × AP / bbox num 0.04708089 0.04552970 0.04378378 0.04219980 0.04009217

Random
AP 0.17233333 0.18633333 0.19866667 0.207 0.21533333

bbox num 36603.6667 44055.6667 51381.3333 58653.6667 66240
10k × AP / bbox num 0.04708089 0.04229498 0.03866514 0.03529191 0.03250805

Localization stability
AP 0.17333333 0.18266667 0.19133333 0.20033333 0.20633333

bbox num 36603.6667 42171 47576.3333 53144.6667 59066.3333
10k × AP / bbox num 0.04735410 0.04331571 0.04021607 0.03769585 0.03493248

Method 3 times average of results in each step
1 2 3 4 5

ISAL
AP 0.20733333 0.21266667 0.21766667 N/A N/A

bbox num 54060.3333 57655 61360.3333 N/A N/A
10k × AP / bbox num 0.03835221 0.03688608 0.03547351 N/A N/A

Random
AP 0.222 N/A N/A N/A N/A

bbox num 73457 N/A N/A N/A N/A
10k × AP / bbox num 0.03022176 N/A N/A N/A N/A

Localization stability
AP 0.21133333 0.21766667 N/A N/A N/A

bbox num 64631.3333 70119.3333 N/A N/A N/A
10k × AP / bbox num 0.03269828 0.03104232 N/A N/A N/A

Table 7: The experiment result on COCO with Faster R-CNN.
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