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Table 1: Ablation studies of our proposed model on RGB SOD datasets. “RC” means RGB convertor. “Bili” denotes
bilinear upsampling and “F” means multi-level token fusion. “TMD” denotes our proposed token-based multi-task decoder,
while “C2D” means using the conventional two-stream decoder to perform saliency and boundary detection without using
task-related tokens. The best results are labeled in blue.

Settings
DUTS [25] HKU-IS [10] PASCAL-S [12] SOD [18]

Sm maxF Emax
ξ MAE Sm maxF Emax

ξ MAE Sm maxF Emax
ξ MAE Sm maxF Emax

ξ MAE
Baseline 0.824 0.780 0.909 0.071 0.858 0.854 0.938 0.075 0.826 0.795 0.878 0.096 0.802 0.803 0.880 0.100
+RC 0.827 0.785 0.913 0.070 0.860 0.856 0.939 0.074 0.830 0.797 0.879 0.095 0.804 0.805 0.880 0.100
+RC+Bili 0.867 0.835 0.929 0.048 0.901 0.901 0.956 0.044 0.856 0.827 0.891 0.074 0.833 0.836 0.891 0.077
+RC+RT2T 0.881 0.856 0.934 0.043 0.914 0.918 0.961 0.037 0.864 0.838 0.896 0.070 0.844 0.850 0.894 0.069
+RC+RT2T+F 0.895 0.874 0.939 0.039 0.925 0.932 0.966 0.032 0.871 0.845 0.897 0.068 0.851 0.861 0.899 0.068
+RC+RT2T+F+TMD 0.896 0.877 0.939 0.037 0.928 0.937 0.968 0.030 0.873 0.850 0.900 0.067 0.854 0.866 0.902 0.065
+RC+RT2T+F+C2D 0.891 0.870 0.937 0.040 0.924 0.931 0.966 0.033 0.869 0.844 0.896 0.069 0.852 0.860 0.898 0.067

1. Ablation Study on RGB SOD Datasets
We further report the results of ablation studies on four

RGB SOD datasets, i.e., DUTS, HKU-IS, PASCAL-S, and
SOD, in Table 1 to demonstrate the effectiveness of our
VST model components.

The baseline model is using transformer encoder to ex-
tract patch tokens T E

r and then directly using T E
r to predict

the saliency map with 1/16 scale by using MLP on each
patch token. Based on the baseline, we insert RGB conver-
tor right after the transformer encoder, shown as “+RC” in
Table 1. Compared to the baseline, RC brings performance
gains especially on the DUTS and PASCAL-S datasets,
which demonstrates its effectiveness. For other compo-
nents, i.e., RT2T, multi-level token fusion, and multi-task
transformer decoder, we get consistent conclusions with the
ablation studies on RGB-D SOD datasets as follows.

First, using bilinear upsampling (“+RC+Bili”) can sig-
nificantly improve the model performance while using our
proposed RT2T (“+RC+RT2T”) can further bring perfor-
mance gains, hence demonstrating the effectiveness of our
proposed RT2T. Second, based on “+RC+RT2T”, multi-
level token fusion (“+RC+RT2T+F”) can lead to better
performance on all four datasets, which verifies its effec-
tiveness. Third, using the multi-task transformer decoder
(“+RC+RT2T+F+TMD”) can improve the model perfor-

*Equal contribution.
†Corresponding author.

mance on all four datasets and it is also superior to the con-
ventional two-stream decoder (“+RC+RT2T+F+C2D”).

To this end, the results of ablation studies on both RGB
and RGB-D SOD datasets strongly demonstrate the effec-
tiveness of our proposed VST components.

2. Layer Number Study
We conduct experiments to study the optimal numbers of

different transformer layers, i.e., LC in the transformer con-
vertor and LD in the multi-task transformer decoder, jointly
considering computational costs and model performance.
Note that there are three decoder modules at three scales
in the multi-task transformer decoder, thus we set different
transformer layer numbers for them, i.e., LD

3 for 1/16 scale,
LD
2 for 1/8 scale, and LD

1 for 1/4 scale. The experimental
results on four RGB-D SOD datasets, i.e., NJUD, DUTLF-
Depth, STERE, and LFSD, are given in Table 2.

In our initial model setting, we set LC = LD
3 = 8. Since

LD
2 and LD

1 are used at relatively large scales, we initially
set both of them to 4, as shown in row I in Table 2. Then,
we start to change the numbers of different layers.

We first reduce LD
2 and LD

1 from 4 to 2 to save compu-
tational costs. The experimental results on row II show that
it can get comparable performance with less computational
costs compared with row I. Hence, we set LD

2 = LD
1 = 2

and start to change LD
3 from 8 to 6, 4, 2, respectively, which

are shown in row III, IV, V in Table 2. We find that as LD
3

1



Table 2: Comparison of using different numbers of transformer layers in our VST model. The final model setting is labeled
in blue.

ID Layer Num MACs Params NJUD [7] DUTLF-Depth [22] STERE [19] LFSD [11]
LC LD

3 LD
2 LD

1 (G) (M) Sm maxF Emax
ξ MAE Sm maxF Emax

ξ MAE Sm maxF Emax
ξ MAE Sm maxF Emax

ξ MAE
I 8 8 4 4 48.35 119.30 0.925 0.925 0.955 0.033 0.940 0.947 0.966 0.026 0.910 0.902 0.948 0.039 0.878 0.884 0.914 0.066
II 8 8 2 2 36.78 113.39 0.923 0.922 0.955 0.035 0.943 0.947 0.968 0.025 0.911 0.904 0.948 0.039 0.874 0.878 0.908 0.069
III 8 6 2 2 36.20 110.43 0.921 0.920 0.952 0.036 0.940 0.945 0.966 0.026 0.910 0.904 0.948 0.040 0.875 0.883 0.911 0.067
IV 8 4 2 2 35.61 107.47 0.921 0.920 0.951 0.036 0.942 0.947 0.968 0.026 0.911 0.904 0.949 0.040 0.876 0.880 0.912 0.068
V 8 2 2 2 35.03 104.52 0.922 0.921 0.952 0.036 0.940 0.944 0.965 0.026 0.912 0.906 0.949 0.039 0.873 0.875 0.908 0.068
VI 6 4 2 2 33.30 95.65 0.923 0.921 0.952 0.036 0.943 0.948 0.968 0.024 0.913 0.906 0.949 0.039 0.875 0.878 0.912 0.067
VII 4 4 2 2 30.99 83.83 0.922 0.920 0.951 0.035 0.943 0.948 0.969 0.024 0.913 0.907 0.951 0.038 0.882 0.889 0.921 0.061
VIII 2 4 2 2 28.68 72.00 0.923 0.921 0.953 0.036 0.938 0.943 0.963 0.028 0.912 0.906 0.950 0.039 0.881 0.887 0.917 0.062
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Figure 1: Qualitative comparison against state-of-the-art RGB SOD methods. (GT: ground truth; VST-B: Boundary maps
predicted by our VST.)

decreases, the computation costs decrease gradually while
the results are generally comparable. However, the model
performance on row IV is better than that on row V on
DUTLF-Depth and LFSD datasets. Thus, we set LD

3 = 4
and start to change LC from 8 to 6, 4, 2, respectively, which
are shown in rows VI, VII, VIII. It can be seen that the per-
formance on row VII is the best and the model has accept-
able computational costs. Hence, we set LC = LD

3 = 4 and
LD
2 = LD

1 = 2 as our final model setting.

3. More Visual Comparison with State-of-the-
art Methods

We give more visual comparison results with the state-
of-the-art RGB and RGB-D SOD methods in Figure 1
and Figure 2, respectively. It shows that our VST model
can handle well in many challenging scenarios, i.e., big

salient objects, cluttered backgrounds, foregrounds and
backgrounds with very similar appearance, etc, while ex-
isting methods are heavily disturbed in these scenarios. Be-
sides, we also show the boundary maps predicted by our
RGB VST and RGB-D VST models in Figure 1 and Fig-
ure 2, respectively. It can be seen that our models can pre-
dict clear boundaries for salient objects.
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