Multi-Echo LiDAR for 3D Object Detection

Yunze Man', Xinshuo Weng', Prasanna Kumar Sivakumar?, Matthew O’ Toole!, Kris Kitani!
!Carnegie Mellon University, 2DENSO

{yman, xinshuow, mpotoole, kkitani}@cs.cmu.edu,

Supplementary

A. Synthetic Dataset Simulation

Though we briefly describe the synthetic multi-signal Li-
DAR measurement generation process and its data format
in the main paper, here we provide details about the entire
data simulation process. We will introduce our simulation
of ambient signals (Sec A.2) as well as multi-echo point
cloud and reflectance signals (Sec A.3).

Our simulation is based on a new large-scale synthetic
dataset AIODrive [5] which is in submission to another con-
ference. We cite the paper anonymously and provide it as
supplementary “AIODrive.pdf”.

A.1. Input Coordinate Transformation

As shown in Algorithm 1, we take RGB, depth and sur-
face normal images, denotes as I,.44, 14, I, as the input of
the simulation process, where the RGB and depth signals
are directly captured by top-mounted RGBD cameras [5],
and the surface normal is directly converted from depth im-
ages — The process is accurate because of the perfect syn-
thetic depth values.

In order to mimic the spinning mechanism of LiDAR
sensor, we perform a Polar-to-Image coordinate transfor-
mation on all input images. Specifically, we approximate
the LiDAR sensor as a point in the 3D space and define a
LiDAR sensor array A[Ry, Ry in the polar coordinate (i.e.
elevation and azimuth). For all ¢ € [1, Ry],j € [1, Ry],

A(i, 7) = (0i575),

where 6 and are vectors representing the LiDAR sen-
sor detector arrangement, and are predefined according to
the desired vertical and horizontal FoV and resolution, and
Ry denotes the number of vertically aligned LiDAR de-
tectors on the sensor, and Ry denotes the number of hor-
izontally aligned detection a detector performs during one
single sweep. Then, we project the polar coordinate map
A[Ry, Ry| onto the 2D image space, resulting in non-
linearly arranged positional map Asp[Ry, Ry] on the 2D
image plane. Then, we generate new images from the input
images by sampling and interpolating pixels according to

prasanna.kumar.sivakumar@na.denso.com

the 2D positional map Asp[Ry, Ry]. For any input image
Iim S {Irgb7-[d7 In}» Vi € [L RV];j € [la RH]s

Iz/m(l7]) = interp(IZ-m(x, y))? (‘Tvy) = AQD(i7j) (2)

Then we get new images I}, I}, I;, where pixels are ar-
ranged according to the arrangement of LiDAR detector ori-

entations.

A.2. Ambient Illumination Signals

The ambient illumination signals are sunlight reflected
by objects. Thus, from the imaging perspective, the infor-
mation encoded in the ambient signals is very similar to
that collected by RGB camera. Collected using CARLA [1]
simulator, the AIODrive dataset [5] captures RGB images
in the scene by deploying RGB cameras on top of the ego-
vehicles. Since LiDAR sensor usually captures light with
infrared wavelength, we take R-channel from the RGB im-
ages and treat it as a simulation of the ambient signal. The
ambient signal is represented in the form of images Iympient,

/
Iambient ~ IT

where I/ denotes the R-channel of image I’ after coordinate
transformation.

A.3. Multi-echo Point Cloud and Reflectance Sig-
nals

Generate Raw 3D Tensor Data. Because the LiDAR sen-
sor is essentially a time-of-flight measurement of photons,
to simulate multi-signal LiDAR sensing measurements, we
first simulate the photon measurements. Specifically, with-
out considering the random false detection which happens
occasionally in real LiDAR sensors, we formulate the num-
ber of photons Ny received by a LiDAR detector in re-
sponse to an illumination period of a signal light pulse by a
temporal histogram:

Np [’I”L] ~ P(Nsignal[n] + Nambient [n})v (3)

where n is the n-th time interval along the temporal axis.
Function P(-) models a Poisson distribution, Nignai[r2] is
the number of detected signal photons at the time interval
n, and Nymbient models the number of ambient photons.

Algorithm 1 Multi-echo LiDAR Simulation

Inputs: I.g1,: RGB image
I4: Depth image
I,,: Surface normal image

Parameters: IN: Number of time bins
SBR: Signal-Background-Ratio
Ry, Fyg: Horizontal Resolution and FoV
Ry, Fv: Vertical Resolution and FoV
S: Neighborhood aggregation kernel size
K: Number of echo groups

Outputs: L pient[Rv, Rpr]: Ambient image

Ireflectance[RV7 RH, K]I Reflectance image
Py : Multi-echo Point Cloud Returns

1: Sample LiDAR sensor array ARy, Ry in the polar coordinate according to FoV F, Fy
2: Project A[Rp, Ry onto the 2D image space and get the positional map Asp[Rpr, Ry]

3: Transform the input images Ii,, into polar coordinate ;s as Eq. 2

> Get ambient image Lmbpient[Rv, R]

4: Calculate signal photons Niignal for each pixel (h, w) from Eq. 4;
5: Calculate ambient photons Nampient for each pixel (h, w) from Eq. 5;
6: Calculate ambient photons Ny[Ry, Ry] for each pixel (h, w) from Eq. 3;

7: Simulate multi-echo mechanism and generate N [Ry, Ry, N] by neighborhood aggregation as in Eq. 6

8: Get Top-K returns along the temporal axis with Eq. 7

9: Project the valid bins into 3D space and generate Top-K point cloud returns

> Get multi-echo point cloud Py

10: Simulate the reflectance by number of points insides its corresponding bins

11: Rearrange reflectance values of points into ‘LiDAR Image’ space

> Get reflectance image Iiefiectance| RV, R, K]

In Cartesian N
|

i | R-Channel ' - i
3 Depth Image —i\i: ‘Gl et 4 Depth Image _ —i—> ME Point Cloud E
: P 8 | P g . MEPointCloud | [LME Point Cloud] :

Surface Normal i
Input /

Surface Normal —> L —{—> ME Reflectance

and Reflectance |

Figure 1: Multi-signal LiDAR measurements Simulation. Taking the inputs from AIODrive [5], we first transform the
images from Cartesian space into polar space to mimic the LiDAR spinning mechanism. Then infrared ambient illumination
is approximated by taking R channel of the RGB image. Multi-echo point cloud and reflectance signals are generated from

trasformed RGB, Depth and surface normal images.

Based on the Eq. 3, the first step of our raw multi-echo
LiDAR data generation is to generate a 3D tensor of photon
counts N[Ry, Ry, N| representing the number of pho-
tons detected by the sensor. Here (Ry, Ryy) is the vertical
and horizontal resolution of the LiDAR (height and width of
the ‘LiDAR Image’) and NV represents the number of time
intervals.

To model the number of signal photons Nsignai[12], We
consider the surface reflectance, angle of incidence during
reflection and radial attenuation. We model the relative pho-

ton number by assuming all LiDAR transmitters emit lasers
with the same energy (same number of photons). Then,
according to Lambert’s cosine law, the reflected energy is
proportional to cos(#) where 6 is the incidence angle of the
light with respect to the surface. This information is given
by surface normal image I},. We use a near infrared signal
light, i.e, the R channel of the RGB image I, to approxi-
mate the reflectance of the surface. Also, the radial falloff
(attenuation) of light energy is proportional to the square of
travel distance. We can directly take advantage of the accu-

Figure 2: Qualitative results of our MSLiD on real dataset. The ground truth bounding boxes and predicted bounding
boxes are labeled as red and green respectively. Note that 1 echo points are shown as white, 2"¢ echo points are shown as

green, and 3™ echo points are shown as blue.

rate depth image I/;. Then, the number of signal photons is
modeled as:

Norm (SBR x 71452‘&;5}5?9) fn—=n*

4
0 Ifn #n* @)

Niignal (h, w,n) ~ {
where the Norm operation means to normalize over the
whole image, (i.e. divided by the average value in the en-
tire image), SBR is the Signal-Background-Ratio used to
control the relative strength between signal and background
light, and n* is the time bin during which the signal light is
reflected by the surface.

To model the number of ambient photons Nambient[12], we
simply takes the R-channel of the RGB images and normal-
ize over the whole image,

Nambient (b, w,n) ~ Norm (I.[h,w]), ¥Yn € [1,N] (5)

Then using Eq. 3 together with Eq. 4 and Eq. 5, we can
simulate the 3D tensor of photon number N, [Ry, Ry, N].
Given the 3D tensor of photon numbers, the next step is
to model the multi-echo mechanism. As explained in the
main paper, multiple echoes happen because laser beams
have a wider coverage of the 3D space instead of a perfect
2D line. In the 2D ‘LiDAR Image’ space, this can be ex-
plained as — Neighbor pixels overlap with each other.

We use a kernel function G(+) to simulate the spatial cov-
erage, i.e., the number of photons in a given time bin will be
a weighted sum of its spatial neighborhood bins (not tem-
poral ones), with nearer neighbors contributing more:

Nphwn] = Y Y G(kn, ky) - Np[h,w,n], (6)
(h,w)eN (h,w)

where N is the neighborhood of a given position on the

Table 1: Performance comparison of 3D object detection with SOTA methods on our collected real-wold dataset.

Method Car - IoU = 0.7 Car-IoU =0.5 Person - IoU = 0.5 Person - IoU = 0.25
Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard
full echo 75.0 42.9 30.6 | 86.8 65.5 65.1 | 474 29.9 20.3 | 58.5 39.2 25.6
SECOND [6] | +ambient 74.2 42.0 30.1 | 86.5 65.6 629 | 469 29.7 19.8 | 589 39.1 254
+echo label | 75.0 432 30.5 | 86.9 65.9 65.0 | 482 30.2 20.0 | 59.1 39.5 25.6
full echo 76.9 441 31.2 | 88.1 67.2 65.3 | 52.7 30.9 20.8 | 62.0 41.2 26.2
PV-RCNN [3] | +ambient 76.3 43.8 31.3 | 879 67.1 65.0 | 52.6 30.3 204 | 61.7 41.3 25.8
+echo label | 77.4 44.0 309 | 88.4 66.9 64.9 | 535 314 20.6 | 62.8 41.7 26.0
MSLiD 79.5 45.3 30.7 | 89.7 68.1 65.3 | 57.5 34.2 21.5 | 66.5 43.2 27.7
Improvement +2.1 +1.2 -0.6 | +1.3 +0.9 +0.0 | +4.0 +2.8 +0.7 | +3.7 +1.5 +1.5

image plane, and G (ky, k,,) is the weight function over the
distance between a given 2D position (rp, r,,) and its neigh-
bor position (ky, k.,). Specifically, we use a Gaussian func-
tion for G(-). By controlling the parameters of the kernel
function, we can control the spatial coverage of the lasers.

Generate Top-K Point Cloud Returns. Because standard
LiDAR-based perception systems [4, 6, 2] take point cloud
data as input (not raw photon count data Ni[Ryv, Ry, NJ),
we take one step further to convert our raw multi-echo Li-
DAR data into point clouds so that they can be easily used in
modern perception systems. Note that, with a large spatial
coverage rate, each laser beam is able to cover a large 3D
volume and is more likely to hit more than one target (ob-
ject). This is represented as multiple strong peaks along the
temporal histogram of a sensor beam. Specifically, when
generating the top-K point cloud returns, we take the top-
K maximum bins along the temporal axis for each sensor
beam, i.e., we select the bin with the top-K number of pho-
tons that exceeds a threshold and obtain Nj[Ry, Ry, K] as
follows:

Ni[Rv, Ry, K] =T (S (Nj[Rv, Ry, N]) [1. . K]), (7)

where S() is a sort function that descendingly sorts the
number of photon counts along the temporal axis N. Then
we only take the top-K channels in the temporal axis (i.e.,
the top-k maximum bins). Also, T'(-) is a threshold func-
tion that masks out bins with number of photons less than
a threshold, i.e., reject bins that receive noise instead of a
light signal. Once we have obtained the Ni[Ry, Ry, K],
we can then transform it to K point clouds as each valid
bin (non-rejected) can be back-projected to a point in 3D
space. As we use a threshold to mask out invalid points, the
number of valid points will be fewer when K is higher, i.e.,
the 1°! strongest point cloud has more points than the 2"
strongest point cloud and so on.

After getting the multi-echo point cloud, we can simu-
late the reflectance of each point by normalizing the num-
ber of points inside the bins, because we assume that
each LiDAR sensor transmitter emits same number of
photons. The reflectance values of the multi-echo point

cloud can be rearranged into the ‘LiDAR Image’ space
Ireflectance [RVa RH» K} .

We summarize our multi-echo LiDAR simulation pro-
cess in Algorithm 1 and in Figure 1. In terms of the imple-
mentation details, we use our all five camera viewpoints and
create a 360° FoV of the multi-echo LiDAR point cloud.
We use 10240 numbers of time bins to voxelize 1000 me-
ters of depth range in each view. When we sample the Li-
DAR sensor array in the polar coordinate, each view has a
45° vertical FoV and 140° horizontal FoV. For frontal view,
we sample in [—20°,25°] vertical FoV with 0.2° of reso-
lution, and [—70°,70°] horizontal FoV with 0.1° of reso-
lution. To simulate a relatively large spatial coverage, we
define a [5, 5] patch in image coordinate centered around
the projected position as its neighborhood.

B. Qualitative results of MSLiD

In the Sec. 4.3 of the main paper, we give a quantitative
analysis of our method on the real-world dataset. Here, we
shown some qualitative results of our MSLiD in Fig 2. Note
that 1% echo points are shown as white, 2" echo points are
shown as green, and 3™ echo points are shown as blue. Our
method achieves good results on the real-world dataset in
different traffic and scenarios.

C. Comparisons with SOTA methods on extra
input dimension

In Table 1, we show results for [0, 3] using points with
extra input dimensions (ambient and echo index label), and
validate that the improvement of MSLiD is from our tech-
nical contributions. Multi-echo points are regarded as inde-
pendent points and grouped into one point cloud. In ‘full
echo’, points have 3D coordinates and reflectance, with the
dimension of [z, y, z, 7. In ‘+ambient’, an additional ambi-
ent channel a is added to each point. In ‘+echo label’, both
the ambient value a and the echo label e (indicating the echo
group of each point) are added, resulting in the point input
dimension [z,y, z,7, a, €].

From the results, we observed that adding ambient a

does not significantly affect performance, and adding echo
label only shows incremental improvements to [0, 3] on
“easy” and “moderate”. This means that trivially adding
extra input dimensions (ambient and echo label) cannot
provide significant improvements while the technique pro-
posed in our MSLiD model can better leverage these extra
nputs.

References

(1]

(2]

(3]

(4]

(5]

(6]

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator. arXiv preprint arXiv:1711.03938, 2017. 1

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 12697-12705, 2019. 4

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 4, 5

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. From points to parts: 3d object detection
from point cloud with part-aware and part-aggregation net-
work. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 2020. 4

Xinshuo Weng, Yunze Man, Dazhi Cheng, Jinhyung Park,
Matthew O’Toole, and Kris Kitani. All-In-One Drive: A
Large-Scale Comprehensive Perception Dataset with High-
Density Long-Range Point Clouds. arXiv, 2020. 1, 2

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 4,
5

