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Figure 1: Conditioned Waypoint sampling: 1) The first image shows the scene with the past trajectory as blue circles.
The yellow star indicates the sampled goal. 2) The unconditioned waypoint distribution can be seen in the second image.
The distribution is goal-agnostic and therefore probability mass is distributed over all three roads. 3) The third image is
the resulting waypoint distribution, by multiplying the multivariate Gaussian prior with the unconditioned prediction. The
diamond indicates a sampled waypoint 4) The final image shows the trajectory towards the sampled goal (star) while crossing
the sampled waypoint (diamond).

SDD inD

TTST ✗ ✗ ✓ ✗ ✓
CWS ✗ ✓ ✓ ✓ ✓

ADE 65.00 52.31 47.94 17.77 14.99
FDE 86.98 86.98 66.71 28.52 21.13

Table 1: Ablation results for Conditioned Waypoint
Sampling (CWS) and TTST: We benchmark the perfor-
mance of Y-net with and without our proposed CWS and
TTST on our long horizon forecasting setting, predicting
tf = 30 seconds into the future given tp = 5 seconds of
past motion history. All reported errors are in pixels (lower
is better) for Nw = 1, Ke = 20 and Ka = 1.

1. Supplementary details for Y-net
1.1. Conditioned Waypoint sampling

Goal and waypoints are dependent to each other. Figure
1 shows an example, where the road forks into three differ-
ent paths. If the sampled goal lies on the bottom path, the
agent most likely will not pass through a waypoint on the
upper or middle path, and will prefer a waypoint lying on
the bottom road.

Following this intuition, we introduce a prior to condi-
tion the waypoint sampling hierarchically on the already
sampled goal and waypoints.

We first sample and fix the goal and thereby the possible
locations of the next waypoint is constrained. We assume
that the waypoint lies on a straight line segment connecting

∗ indicates equal contribution.
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Figure 2: GIF Visualization: Demonstrating the goal, waypoint
and path multimodality for long term human trajectory prediction
(30 seconds). Given the past 5 seconds input history (green), we
predict diverse future trajectories (current location in orange, past
in red). Due to restrictions, we can only show a snapshot. Please
refer to the supplementary file or ArXiv version for the animation.

the sampled goal and the past trajectory at exactly wi−np

nf

of the line segment length, where wi denotes the chosen
timestep for waypoint i, np the past timesteps and nf is the
future prediction horizon in timesteps, e.g. with the setting
Nw = 1 waypoint at w1 = 20, np = 5 and Nf = 30, it
would lie in the middle of the segment. However, this as-
sumption is too restrictive and it can lead to unrealistic paths
not complying with the environment constraints. To relax
this assumption, we use a multivariate Gaussian prior cen-
tered at the assumed location. The variance is chosen adap-
tively by considering the distance between the agent’s cur-

rent position and the sampled goal as σ⊥ =
||unp+nf

−unp ||
α

where α is a scaling hyper parameter. We set α = 6 in our
experiments. Intuitively, the greater the distance between
the current position and the sampled goal, the more uncer-
tain is the waypoint position. σ⊥ is the variance perpendic-
ular to the line segment, and we set the variance parallel to
the line segment to σ∥ = β ∗ σ⊥ with β = 0.5 in our ex-
periments. This constrains the possible waypoint position
more in the direction of travel and leaves more room for
uncertainty in the perpendicular direction.

We multiply the described multivariate Gaussian prior to
the predicted waypoint distribution and normalize the val-
ues. Fusing prior and predicted distribution leads to scene-
compliant waypoints (predicted distribution) in the direc-
tion towards the sampled goal (prior). As seen in the exam-
ple, it suppresses probability mass on the upper and middle
road. From the resulting distribution we use softargmax
for the first waypoint and sample the remaining Ka−1 way-
points randomly according to the probability values of each
pixel, as described in Section 3.2 in our main paper, to get
two-dimensional points from the distribution.

If there is more than one waypoint, i.e. Nw > 1, we
repeat the above process for the next waypoint at wi and
condition it to the previously sampled waypoint at wi+1.

Table 1 shows an ablation of the Conditioned Waypoint
Sampling CWS. While it doesn’t have an effect on the FDE
– CWS doesn’t affect the goal sampling – the ADE decreases
by 24.3%.

1.2. Test-Time Sampling Trick

In situations where multiple samples are required, such
as during testing, sampling from P can be carried in a
straightforward fashion by considering X as a categorical
distribution with given probabilities Xij for position (i, j).
However, this approach doesn’t take into account the num-
ber of samples required from P all of which jointly will rep-
resent the quality of the estimated P. For example, if only
a few samples are required, sampling indiscriminately spa-
tially is sub-optimal since samples are likely to be wasted if
drawn from low probability regions or sampled from neigh-
boring regions.

Hence, we propose a ‘Test-Time Sampling Trick’
(TTST) that is cognizant of the number of goal samples,
Ke, needed for evaluation. During testing, we propose to
first sample a large number of points (10,000 in our exper-
iments) from the estimated distribution P̂ in a Ke-agnostic
manner.

To eliminate outliers, we suppress samples from pixels
(i, j) with probability Xij below a threshold thrrel. It is
set adaptively for each probability matrix X separately to a
fraction of the highest occurring probability in that matrix:
thrrel = max(X) ∗ 0.01.

Further, to control the tradeoff between diversity and pre-
cision, we use the temperature T . Before the pixel-wise
sigmoid operation, we divide the predicted logit probability
map through T . Lower temperature values results in prob-
ability maps X with low entropy, i.e. the probability mass
is concentrated in a smaller number of pixels and samples
are increasingly drawn from more likely regions. Higher
temperature values increase the diversity of samples. For
the short term setting, we use T = 1.0, while for our pro-
posed long term setting, we increase the diversity by setting
T = 1.8.

Then, we propose to run the fast clustering algorithm K-
means on these sampled points with the number of clusters
set to Ke − 1. The cluster centers obtained from the K-
means algorithm, along with the softargmax sampled point,
form the final set of Ke samples to be used for evaluation.
Note that while in spirit this is similar to the ‘truncation
trick’ proposed in PECNet [9], the ‘truncation trick’ is K-
agnostic and requires a well suited σT to be chosen exper-
imentally beforehand for a given K. Further, their ‘trun-
cation trick’ operates in the latent variable space with no
direct control over the final generated samples since in [9]
multi-modality is introduced through implicit approaches
like Variational Auto-encoders. Alleviating these limita-
tions, TTST provides direct control on the sampled points,



is cognizant of the number of samples needed K and does
not require any K-specific tuning because of the design
choice of using explicit probability heatmaps.

Table 1 shows the effectiveness of our proposed TTST.
TTST reduces the error on SDD and inD by 9.1% and
18.5% in ADE, respectively, and 30.4% and 35.0% in FDE.

2. Data Preprocessing
In this section we describe the data preprocessing steps

for our proposed long term setting for both datasets: Stan-
ford Drone Dataset (SDD) [12] and Intersection Drone
Dataset (inD) [2].

For the short term setting on SDD and ETH [11] / UCY
[7], we use the well-established preprocessed data from the
TrajNet benchmark [14] and Social GAN [5] respectively.
While SDD already lies in pixel coordinates, we describe
our conversion process from world coordinates to pixel co-
ordinates for ETH/UCY in Section 2.3

2.1. Stanford Drone Dataset

As mentioned above, we use the preprocessed data from
the TrajNet benchmark [14] for the short term benchmark to
be comparable with other state-of-the-art methods and their
results.

For the proposed long term setting,we split the data of
Stanford Drone Dataset (SDD) in the same fashion as pro-
posed in TrajNet benchmark [14] evaluating on the same
scenes, all of which are not seen during training. The raw
data is recorded in FPS = 30 and we first downsample the
data to our proposed FPS = 1, so one time step in the tra-
jectory equals 1 second. The raw data contains bounding
boxes of the detected agents. We use the middle point of the
bounding boxes to get the same coordinate representation
as the short term setting. The data contains various types of
agents beyond pedestrians (bicyclists, skateboarders, cars,
buses, and golf carts), we filter out all non-pedestrians and
short trajectories below np + nf out. As the raw data is
noisy and contains temporal discontinuities, we split the tra-
jectories at those discontinuities. We use a sliding window
approach without overlap to split up long trajectories, re-
sulting in our final dataset.

2.2. Intersection Drone Dataset

We use similar steps for the Intersection Drone Dataset
as for SDD Section 2.1. To evaluate Y-net and the baselines
performance on unseen scenes during training, we only use
location ID 4 during testing. The video and detection are in
FPS = 25, and again, we downsample the data to FPS = 1.
We then filter out non-pedestrians and short trajectories and
use a sliding window approach without overlap to split long
trajectories. Since the data lies in world coordinates, we
convert it into pixel coordinates by scaling with the pro-
vided scale factors from the authors.

2.3. ETH/UCY

We use the same preprocessed data as [5] 1. Our model
represents trajectories as heatmaps and hence needs the co-
ordinates in pixel space. The ETH/UCY data lie in world
coordinates (meter unit). To project the data into pixel space
we use the provided homography matrices from the dataset
for the ETH [11] scenes ETH and HOTEL and create our
own homography matrices for the UCY[7] scenes UNIV,
ZARA1 and ZARA2. To enable fair comparisons, we con-
vert our predictions back to world coordinates using the in-
verse homography matrices and calculate our errors with
the untouched raw data in world coordinates, to avoid any
errors from our projection.

3. Baseline models
We benchmarks against several state-of-the-art methods

across both short and long term trajectory forecasting set-
tings which we describe briefly.

• Social GAN [5] proposes a GAN for multi-modal tra-
jectory forecasting lumping together the where/how
multi-modalities.

• Conditional Flow VAE (CF-VAE) [1] uses a condi-
tional normalizing flow based Variational auto-encoder
that models future uncertainty without disentangling
underlying factors.

• P2TIRL [4] is a grid based trajectory forecasting
method learnt using maximum entropy inverse rein-
forcement learning.

• SimAug [8] is a recently proposed method that uses
additional adversarially generated 3D multi-view data
for adapating to novel viewpoints in forecasting.

• PECNet [9] is the prior state-of-the art method at the
time of submission on short-term trajectory predic-
tion on the Stanford Drone Dataset. They propose to
use goal-conditioning but does not account for multi-
modality in the path to the goal.

• DESIRE [6] proposes an inverse reinforcement learn-
ing approach for prediction by planning and uses a re-
finement module to rank and optimize the predictions.

• TNT [19] closely improves upon PECNet’s perfor-
mance for K = 5 samples on SDD and is the prior
state-of-the-art in that setting.

• Trajectron++ [15] proposes a recurrent graph based
forecasting model incorporating dynamic constrains
such as other moving agents and scene information.

1https://github.com/agrimgupta92/sgan



• LB-EBM [10] is a recently proposed method that
learns an energy-based model in the latent space and
a policy generator to map the latent vector into a tra-
jectory. It improved upon PECNet’s performance and
was the previous state-of-the-art method on SDD in the
short term setting.

• Introvert [16] uses a 3D visual attention mechanism
conditioned on the observed trajectory to extract scene
and social information from videos.

• AgentFormer [18] is an attention based method that
jointly models the time dimension and social interac-
tions using a sequence representation while preserv-
ing each agents identity. This work also hold the prior
state-of-the-art on ETH/UCY short term trajectory pre-
diction benchmark.

4. Implementation Details
4.1. Segmentation Model

To incorporate constraints and interactions of the agents
with the scene, we pretrain a semantic segmentation model
to efficiently use the sparse scene image data. Stanford
Drone Dataset contains 60 scene images in total, while inD
only contains images from four different recording loca-
tions. We use the U-net model [13] with ResNet101 [?]
backbone. The ResNet101 encoder’s weights are pretrained
on ImageNet, while the weights for the U-net decoder and
segmentation head are randomly initialized. The images are
downsampled by a factor of four (SDD) and three (inD),
padded to be divisible by 32 as required for U-net and
cropped to 256 × 256. The data is augmented spatially
by rotation, flipping, scaling and perspective transforma-
tion and we introduce Gaussian noise, blurring as well as
color, brightness and contrast shifts. The semantic maps
are manually labeled into the Nc = 5 classes: Pavement,
tree, terrain, structure and road, as well as a dummy class
for padding and black areas in the inD dataset. We will
release the labeled semantic segmentation maps for repro-
ducibility and future work. We only use the corresponding
images from the trajectory train scenes for training to eval-
uate the performance of Y-net on unseen environments for
both SDD and inD.

The SDD segmentation model is trained using ADAM
optimizer to reduce the Dice Loss [17] with an initial learn-
ing rate of 1×10−4 and batch size of 4. The learning rate is
decreased to 1× 10−5 after 1500 epochs. Further we freeze
the ResNet101 backbone for the first 200 epochs.

As inD only contains images from four locations, we use
the pretrained SDD model and freeze the encoder weights
for the first 1000 epochs to avoid catastrophic forgetting.
All other hyper parameters are the same as for training
SDD.

4.2. Training

We train the entire network end to end with ADAM op-
timizer with a learning rate of 1 × 10−4 and batch size of
8. We scale the overall loss by a factor of 1000. Since
the scene images I have different heights and widths in
all datasets, we ensure that each batch only contains the
image and trajectories from the same scene. Y-net does
not use fully-connected layers and therefore can handle
images of different sizes, without cropping or padding to
the same shape. The RGB scene image I and trajec-
tory heatmaps H are downsampled by 4 for SDD, 3 for
inD and 1.5 for ETH/UCY to save memory and padded
to be divisible by 32. For fair comparisons with previ-
ous methods we upsample the predicted trajectories back
to its original size and compare with the ground-truth data
in original scale. All scene images and trajectories are aug-
mented by spatial flipping and rotation in 90° steps, effec-
tively increasing the number of training trajectories by a
factor of 8. The encoder blocks in Ue have output chan-
nel dimensions [32, 32, 64, 64, 64] and both Ug and Ut start
with two convolutional layers of output channel dimen-
sions 128, followed by blocks of output channel dimensions
[64, 64, 64, 32, 32]. We use λ1 = λ2 = 1 to weight the bi-
nary cross entropy loss between Ug and Ut.

During training Ug predicts the goal and waypoint distri-
bution for all np time steps as an auxiliary task. We presume
that this helps to let the sub-network learn the dynamics of
pedestrian trajectories better. During inference, we only use
the goal and Nw waypoint distributions as needed.

The trajectory sub-network Ut is trained using the
ground-truth goal and waypoints. Those are represented as
trajectory heatmaps as described in Section 3.1 in our main
paper and downsampled spatially to fit the corresponding
feature map shapes of Ut blocks. By using the ground-
truth, Ut learns to predict trajectories leading towards the
goal, while passing the waypoints. During inference, we
use the (TTST) sampled goals and waypoints predicted by
Ug .

We further experiment with deformable convolutional
layers as proposed in [3] on ETH/UCY.

5. Additional Qualitative Results
We show additional qualitative results for long term tra-

jectory prediction (tf = 30) on SDD through a GIF tempo-
rally on another scene in Figure 2.
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