
Supplementary Material

CT

Figure 1: Results of image-based reconstruction. Our network performs the reconstruction by sampling points from the unit sphere S2

(top) and then “folding” this set into a point cloud corresponding to the input image. Here, we show the point clouds, with points colored
according to their initial positions on the sphere (red, green, and blue values are used to color-code each Cartesian coordinate). The
color-coding reveals shape correspondences within and across classes.

1

1. Cloud Transform pseudocode
We provide a pseudo-code in Algorithm 1 as well

as the PyTorch code: https://saic-violet.github.io/cloud-
transformers/.

Data: Input point cloud positions P ∈ R3×n, their
high-dimensional input features X ∈ Rf×n

Result: New high-dimensional output features
Y ∈ Rg×n

Initialize a feature-map I ∈ Rw×w×cin of spatial
dimension w with zeros;

for each point pi ∈ P do
Predict residuals ri ← Linear(pi);
Compute rasterization positions
ki ← T (pi + ri) (see eq. (1) of the main
paper);

Predict feature to rasterize vi ← Linear(xi);
Compute bilinear coordinates bi and
rasterization positions [h•, w•] of ki wrt I (see
eq. (1) of the main paper);

// rasterization
I[h0, w0]← max(I[h0, w0], b

00
i vi) ;

I[h0, w1]← max(I[h0, w1], b
01
i vi) ;

I[h1, w1]← max(I[h1, w0], b
10
i vi) ;

I[h1, w1]← max(I[h1, w1], b
11
i vi) ;

end
I ← Convolve (I);
for each point pi ∈ P do

// de-rasterization
ṽi ← b00i I[h0, w0] + b01i I[h0, w1] +
b10i I[h1, w1] + I[h1, w1]b

11
i ;

Predict output features yi ← Linear(ṽi) ;
end
return Y = {y0, . . . ,yn−1}

Algorithm 1: Cloud Transform pseudo-code. For the
full discussion please refer to the main manuscript, Sec-
tion 3.1

2. Additional experimental results
In Figure 1, we show the “foldings” of the input sphere in

our Single-View reconstruction experiments. The resulting
point colors represent spatial coordinates of their input po-
sitions on the sphere. The shape correspondences learned
implicitly during training are revealed. Additionally, we
provide per-class results for our experiments in Table 2, Ta-
ble 3, Table 4, Table 5 and Table 6.

3. Experimental details
We train our models using the standard ADAM opti-

mizer [1] with the learning rate 1e−4 for generative tasks

3D CNN 2D CNN
Res3D(in=32, out=64) Res2D(in=16, out=32)

MaxPool(2) MaxPool(2)
Res3D(in=64, out=64) Res2D(in=32, out=64)

MaxPool(2) MaxPool(2)
Res3D(in=64, out=64) Res2D(in=64, out=64)

AvgPool AvgPool

Table 1: Our mini-CNN architectures, in the 2D and 3D cases.
Note that a different ConvNet applied per each head indepen-
dently.

(image-based reconstruction and point cloud completion)
and with the learning rate 1e−3 for recognition tasks (se-
mantic segmentation and classification). We halve the
learning rate every 100k iterations for image-based re-
construction and point cloud inpainting experiments. For
classification and semantic segmentation experiments, the
learning rate is decayed by 0.7 and every 25k iterations.

For classification and segmentation experiments we use
batch size 8 per GPU and 2 GPUs in total. For image-based
reconstruction and point cloud completion, the batch size
4 and 2 are used respectively. In both cases, we train the
models on eight GPUs.

4. Multi-Headed Cloud Pooling
Here we provide more details on our multi-headed cloud

pooling layer used in our classification model.
To solve the classification task, we introduce a multi-

headed pooling layer (Figure 2). This is needed, because
unlike other tasks, the output of the classification process is
a global vector of probabilities. We devise this layer to be
as similar to our standard layers as possible.

Thus, similarly to the regular MHCT layer, the new layer
performs multiple rasterizations onto 2D and 3D feature
maps of spatial size 8 and 16 respectively. The channel di-
mension of each head is 32 for three-dimensional heads and
16 for two-dimensional heads. Afterward, the resulting fea-
ture maps are processed with three standard convolutional
residual blocks, each interchanged with a max-pooling. The
architectures of these 2D and 3D ConvNets are shown in
Table 1. The residual path of Res(in, out) consists of two
convolutional layers Conv(in, out) and Conv(out, out) with
a 3 × 3 (or 3 × 3 × 3) spatial filters, each followed by a
BatchNormalization and ReLU activation.

The resulting vectors are aggregated across the heads via
concatenation and processed with a dense layer to form a
final classification vector kclass.

5. Gradient Balancing
Below we provide a more thorough discussion of our

gradient balancing trick introduced in the main paper and

https://saic-violet.github.io/cloud-transformers/
https://saic-violet.github.io/cloud-transformers/

 𝐕

𝐊𝐕

Linear
512 → 𝐜 + 3

𝐊

Linear
512 → 𝐜 + 3

 𝐕

𝐊𝐕

Linear
512 → 𝐜 + 3

… …

……

BN BN BN

 𝐕

𝐕

2D CNN2D CNN2D CNN

 𝐕 𝐕

𝐊𝐕…

…

…

…

BN BN BN

𝐊𝐕 𝐕 𝐊

Linear
512 → 𝐜 + 3

Linear
512 → 𝐜 + 3

Linear
512 → 𝐜 + 3

3D CNN 3D CNN3D CNN

 𝐕

Figure 2: The Multi-Headed Cloud Pooling layer operates as a Multi-Headed Cloud Transform layer except for the de-rasterization step.
Instead of de-rasterization, a compact 2D or 3D ConvNet is applied producing a single vector as an output of each head.

its necessity.

Problem discussion Ultimately, the problem can be pin-
pointed to the fact that as the key ki moves from the top-left
to the bottom-right of a certain grid cell thus traversing only
1/w-th of its variation range, the assignment weight of vi

to the bottom-right corner changes from 0 to 1 (i.e traverses
the full variation range). This means that gradients w.r.t.
keys ki in our architecture will always be roughly w times
stronger than those w.r.t. values vi.

We justify this trick by an exact derivation. Further we
denote a target loss function as L and assume the spatial
feature dimension to be w−1.

Lemma 1. Let k = (k0, k1) ∈ [0, 1]2 be a key, which is
typically an output of the network’s key prediction branch
in our Cloud Transform block. Let b be a vector of bilinear
weights of k inside the enclosing cell, as in equation (1)
(main paper). Then:

∂b

∂k
= w ·


(w · k1−dw · k1e) (w · k0−dw · k0e)
−(w · k1−bw · k1c) −(w · k0−dw · k0e)
−(w · k1−dw · k1e) −(w · k0−bw · k0c)
(w · k1−bw · k1c) (w · k0−bw · k0c)

 (1)

The derivation is straightforward, given the formula for
the bilinear weights b =

(
b00, b01, b10, b11

)
:

b00 = (w·k0i − h1)(w·k1i − w1)

b01 = −(w·k0i − h1)(w·k1i − w0)

b10 = −(w·k0i − h0)(w·k1i − w1)

b11 = (w·k0i − h0)(w·k1i − w0)

(2)

To ease the notations, we denote the matrix above as D,
i.e ∂b

∂k = w ·D.

Lemma 2. Let X = ∂L
∂bi

and Var (X) be its variance.
Then the following inequality on matrix spectral norms
holds:

||DVar (X)DT ||2 ≥
1

2
||Var (X) ||2 (3)

Proof.

2||DVar (X)DT ||2
≥ tr

(
DVar (X)DT

)
trace cyclic prop.

≥ tr
(
DDT Var (X)

)
≥ ||DDT Var (X) ||2
≥ σn(DDT)||Var (X) ||2

(4)

, where σn(DDT) is the smallest non-zero singular value
of DTD.

Note that D has a special form, given −1 ≤ a, b ≤ 0:

D =


a b

−(1 + a) −b
−a −(1 + b)
1 + a 1 + b

 (5)

By a straightforward derivation, one can find two non-
zero singular values σ2 = 1 and σ1 = (2a + 1)2 + (2b +
1)2 + 1 of DDT . And σ1 > σ1, therefore:

||DVar (X)DT ||2 ≥
1

2
||Var (X) ||2 (6)

This, informally, means that D does not decrease gradi-
ent variance Var (X) too much. In the case of 3D rasteriza-
tion operation, the computation is analogous.

To sum up the results above, the back-propagation from
bilinear weights bi to ki has a form:

∂L
∂ki

=

(
∂bi
∂ki

)T

· ∂L
∂bi

= w ·DT · ∂L
∂bi

(7)

From the Lemma 2 we know that multiplication by D
does not decrease variance’s Var (X) spread more than by
two times, while w takes typical vales between 16 and 128.

Intuitively, the gradients’ variance is scaled up by w at
each layer during the backpropagation through the keys.
Therefore, given a network with d cloud transform layers,
the gradient variance would “explode” as wd. We have ob-
served such explosions experimentally. The balancing trick
discussed above successfully fixes this problem and allows
training deep architectures built out of Cloud Transformer
blocks.

References
[1] Diederick P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Proc. ICLR, 2015.
[2] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proc. ICCV, 2019.

Method ceil. floor wall beam col. wind. door chair table book. sofa board clut.
Pointnet 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SegCloud* 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
Eff. 3D Conv 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1
TangentConv 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8
RNN Fusion 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph* 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
ParamConv 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
PointCNN 92.3 98.2 79.4 0.0 17.6 22.7 62.1 74.4 80.6 31.7 66.7 62.1 56.7

CT (ours) std. prot. 94.4 98.2 85.4 0.0 23.6 47.4 71.0 87.3 77.5 66.0 49.3 71.1 57.8

Minkowski32* 91.7 98.7 86.1 0.0 34.0 48.9 62.4 89.8 81.5 74.8 47.2 74.4 58.5

KPConv† 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
JSENet† 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4

CT† (ours) 94.2 97.7 82.7 0.0 34.4 62.8 68.4 89.8 80.4 78.2 61.4 67.7 64.9

Table 2: Semantic segmentation intersection-over-union scores on S3DIS Area-5 split. The models without any marks use the standard
protocol with chunking of the scene into blocks, while the models with † employ KPConv’s [2] protocol. The rest protocols are labeled
with ∗. Per-class results are provided.

Table 3: Per-class classification results on ScanObjectNN.

bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet
3DmFV 39.8 62.8 15.0 65.1 84.4 36.0 62.3 85.2 60.6 66.7 51.8 61.9 46.7 72.4 61.2
PointNet 36.1 69.8 10.5 62.6 89.0 50.0 73.0 93.8 72.6 67.8 61.8 67.6 64.2 76.7 55.3

SpiderCNN 43.4 75.9 12.8 74.2 89.0 65.3 74.5 91.4 78.0 65.9 69.1 80.0 65.8 90.5 70.6
PointNet++ 49.4 84.4 31.6 77.4 91.3 74.0 79.4 85.2 72.6 72.6 75.5 81.0 80.8 90.5 85.9

DGCNN 49.4 82.4 33.1 83.9 91.8 63.3 77.0 89.0 79.3 77.4 64.5 77.1 75.0 91.4 69.4
PointCNN 57.8 82.9 33.1 83.6 92.6 65.3 78.4 84.8 84.2 67.4 80.0 80.0 72.5 91.9 71.8

GFNet 59.0 84.4 44.4 78.2 92.1 66 91.2 91.0 86.7 70.4 82.7 78.1 72.5 92.4 77.6
DI-PointCNN 65.1 80.9 62.4 80.4 90.5 78.0 86.8 88.1 84.6 67.0 84.5 82.8 73.3 95.2 74.1

CT (ours) 50.6 86.9 52.6 87.4 96.2 77.3 85.8 93.8 88.4 80.0 76.4 87.6 81.7 94.3 89.4
CT (ours) + scales 57.8 89.9 45.9 87.4 95.6 84.7 84.8 92.9 88.4 77.4 82.7 85.7 85.8 92.9 95.3

Table 4: Per-class point completion results on ShapeNet compared using F-Score@1%. Note that the F-Score@1% is computed on 16,384
points.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
AtlasNet 0.845 0.552 0.630 0.552 0.565 0.500 0.660 0.624
PCN 0.881 0.651 0.725 0.625 0.638 0.581 0.765 0.697
FoldingNet 0.642 0.237 0.382 0.236 0.219 0.197 0.361 0.299
TopNet 0.771 0.404 0.544 0.413 0.408 0.350 0.572 0.560
MSN 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708
GRNet 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750
CT (ours) 0.921 0.652 0.733 0.710 0.774 0.628 0.811 0.789

Table 5: Per-class point completion results on ShapeNet compared using Chamfer Distance (CD) with L2 norm computed on 16.384 points
and multiplied by 104.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
AtlasNet 1.753 5.101 3.237 5.226 6.342 5.990 4.359 4.177
PCN 1.400 4.450 2.445 4.838 6.238 5.129 3.569 4.06
FoldingNet 3.151 7.943 4.676 9.225 9.234 8.895 6.691 7.32
TopNet 2.152 5.623 3.513 6.346 7.502 6.949 4.784 4.359
MSN 1.543 7.249 4.711 4.539 6.479 5.894 3.797 3.853
GRNet 1.531 3.620 2.752 2.945 2.649 3.613 2.552 2.122
CT (ours) 1.059 4.592 2.581 4.163 3.294 5.816 3.360 2.274

AtlasNet OGN Matryoshka Retrieval Oracle NN CT(ours)
airplane 0.39 0.26 0.33 0.37 0.45 0.53
ashcan 0.18 0.23 0.26 0.21 0.24 0.33
bag 0.16 0.14 0.18 0.13 0.15 0.20
basket 0.19 0.16 0.21 0.15 0.15 0.22
bathtub 0.25 0.13 0.26 0.22 0.26 0.33
bed 0.19 0.12 0.18 0.15 0.17 0.22
bench 0.34 0.09 0.32 0.3 0.34 0.46
birdhouse 0.17 0.13 0.18 0.15 0.15 0.31
bookshelf 0.24 0.18 0.25 0.2 0.2 0.29
bottle 0.34 0.54 0.45 0.46 0.55 0.59
bowl 0.22 0.18 0.24 0.2 0.25 0.25
bus 0.35 0.38 0.41 0.36 0.44 0.53
cabinet 0.25 0.29 0.33 0.23 0.27 0.44
camera 0.13 0.08 0.12 0.11 0.12 0.18
can 0.23 0.46 0.44 0.36 0.44 0.48
cap 0.18 0.02 0.15 0.19 0.25 0.16
car 0.3 0.37 0.38 0.33 0.39 0.45
cellular 0.34 0.45 0.47 0.41 0.5 0.58
chair 0.25 0.15 0.27 0.2 0.23 0.35
clock 0.24 0.21 0.25 0.22 0.27 0.36
dishwasher 0.2 0.29 0.31 0.22 0.26 0.27
display 0.22 0.15 0.23 0.19 0.24 0.31
earphone 0.14 0.07 0.11 0.11 0.13 0.27
faucet 0.19 0.06 0.13 0.14 0.2 0.30
file 0.22 0.33 0.36 0.24 0.25 0.43
guitar 0.45 0.35 0.36 0.41 0.58 0.60
helmet 0.1 0.06 0.09 0.08 0.12 0.13
jar 0.21 0.22 0.25 0.19 0.22 0.28
keyboard 0.36 0.25 0.37 0.35 0.49 0.32
knife 0.46 0.26 0.21 0.37 0.54 0.61
lamp 0.26 0.13 0.2 0.21 0.27 0.37
laptop 0.29 0.21 0.33 0.26 0.33 0.44
loudspeaker 0.2 0.26 0.27 0.19 0.23 0.33
mailbox 0.21 0.2 0.23 0.2 0.19 0.32
microphone 0.23 0.22 0.19 0.18 0.21 0.21
microwave 0.23 0.36 0.35 0.22 0.25 0.48
motorcycle 0.27 0.12 0.22 0.24 0.28 0.34
mug 0.13 0.11 0.15 0.11 0.17 0.15
piano 0.17 0.11 0.16 0.14 0.17 0.21
pillow 0.19 0.14 0.17 0.18 0.3 0.39
pistol 0.29 0.22 0.23 0.25 0.3 0.35
pot 0.19 0.15 0.19 0.14 0.16 0.25
printer 0.13 0.11 0.13 0.11 0.14 0.19
remote 0.3 0.33 0.31 0.31 0.37 0.44
rifle 0.43 0.28 0.3 0.36 0.48 0.55
rocket 0.34 0.2 0.23 0.26 0.32 0.2
skateboard 0.39 0.11 0.39 0.35 0.47 0.58
sofa 0.24 0.23 0.27 0.21 0.27 0.34
stove 0.2 0.19 0.24 0.18 0.19 0.33
table 0.31 0.24 0.34 0.26 0.34 0.42
telephone 0.33 0.42 0.45 0.4 0.5 0.5
tower 0.24 0.2 0.25 0.25 0.25 0.33
train 0.34 0.29 0.3 0.32 0.38 0.51
vessel 0.28 0.19 0.22 0.23 0.29 0.35
washer 0.2 0.31 0.31 0.21 0.25 0.32

Table 6: F-score evaluation (@1%) in the viewer-centered mode, per-class results.

	. Cloud Transform pseudocode
	. Additional experimental results
	. Experimental details
	. Multi-Headed Cloud Pooling
	. Gradient Balancing

