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In this supplementary material, we provide the derivation
details of the solution for Single Fidelity Formulation and
show additional results of the ablation study. We further
show more results of the synthetic and real data recovered
by our methods and compare it with other algorithms.

1. Derivation of Single Fidelity Formulation
Derivation of the Solution for Single Fidelity Formula-

tion in Eq. (8) in the main paper: ADMM solves the (8) by
splitting it into the following subproblems:
• Given Θ and b, x is solved by

x̂= argmin
x
‖x−TΘ(e)−b‖2

2 +
λ

µ
R(x). (1)

This is a traditional denoising problem and can be solved
by the PnP algorithm given the prior R(x), i.e.,

x̂= Dσ (TΘ(e)+b). (2)

where Dσ denotes the denoising operator being used and
σ is the estimated noise level depending on λ/µ .

• Given x and b, optimizing Θ leads to the following prob-
lem:

Θ̂= argmin
Θ

1
2
‖y−HTΘ(e)‖2

2 +µ‖x−TΘ(e)−b‖2
2,

(3)
which can be solved by the back-propagation optimiza-
tion as in DIP, modified by a proximity regularization that
forces TΘ(e) to be close to x− b. For the U-net being
used in our implementation, instead of only minimizing
the first term in (3) as in the loss function, we used both
terms as the loss function. This learned TΘ(e) is thus
playing the role of: i) denoising x−b, and ii) minimizing
the measurement loss y−HTΘ(e).

• Optimizing b is given by

bk+1 = bk− (xk−TΘk(e)), (4)

where the superscript k denotes the iteration number.
∗Corresponding author.

Note that these three steps are performed iteratively and
each of them can have their own inner loops such as the
Θ optimization.

2. Ablation Study Results
2.1. DIP vs. Deep Decoder

We visualize the results of the proposed self-supervised
methods using DIP [8] and deep decoder (DD) [3] as the
prior (PnP-DIP and PnP-DD), as shown in Fig. M1. It can
be seen seen that PnP-DD provide a good reconstruction on
some smooth regions of the images, but for the regions with
many spatial details, there are significant artifacts and over-
smoothness. As mentioned in the main paper, this might be
caused by the lack of the network parameters of the deep
decoder.

Ground Truth PnP-DIP PnP-DD PnP-DIP PnP-DDGround Truth

Figure M1. Reconstructed results of 4 synthetic data with 3 spec-
tral channels by the proposed self-supervised methods using DIP
and deep decoder as the prior, respectively.
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Figure M2. Reconstructed results of two synthetic data with 5 spectral channels by the sole DIP, PnP-DIP with single fidelity term and the
proposed PnP-DIP with double fidelity terms.

2.2. Single Fidelity vs. Dual Fidelity in DIP

Fig. M2 compare the results of the sole DIP (the directly
using DIP), PnP-DIP with single fidelity term and the pro-
posed PnP-DIP with double fidelity terms. It can be seen
that the reconstructed results of the proposed PnP-DIP with
double fidelity terms have clearer detials, as well as less
noise and artifacts.

2.3. Incorporating DIP with TV Prior

Without considering pre-trained HSI denoiser, the previ-
ous self-supervised results are obtained by only using DIP
as the prior in our proposed PnP framework (PnP-DIP).
Here we incorporate the widely used TV prior with DIP
to form a joint PnP framework, namely PnP-DIP-TV. We
initial the parameters by {u = H>y, v = 0, η = 0.01},
and other parameters keep the same as before. We reduce
the effect of TV prior gradually as the increasing of itera-
tions by scaling η by 0.95 each ADMM iteration. Finally,
the average results of PnP-DIP-TV (30.44dB, 0.852) is very
close to PnP-DIP (30.48dB, 0.854). This gives us the fol-
lowing observations; i) Though TV is widely used and can
achieve good results in most tasks, DIP is powerful to learn
a stronger prior. Similar case will happen for other pre-
trained priors such as sparsity. ii) Even at the first few iter-
ations, TV will help the reconstruction, the final results will
rely on DIP. Therefore, we recommend that in our spectral
SCI reconstruction, PnP-DIP can be used as a new base-
line without any training data. However, we do notice that
in real data experiments, TV will help the reconstruction,
which may be due to the measurement noise.

2.4. Choice of the Up/downsampling

U-net is an encoder-decoder scenario, and thus
up/downsampling is playing a pivotal role. As the crucial
components of U-net, pooling and upsampling change the

Table M1. Average PSNR and SSIM of the DIP network using
different up/downsampling.

Upsampling Conv2DTranspose Bilinear PixelShuffle
PSNR/SSIM 30.48, 0.854 29.69, 0.821 27.59, 0.824
Downsampling Average-pooling Max-pooling
PSNR/SSIM 30.48, 0.854 30.26, 0.848

scale and depth of the feature maps. Upsampling is usu-
ally implemented by unlearned forms, (such as bilinear and
PixelShuffle [7]) and learned convolutional filters (trans-
posed convolution or ConvTranspose [10]). We compare
the results using different upsampling in the DIP network,
shown in the upper part Table M1. It can be seen that the
network using ConvTranspose achieves the highest perfor-
mance. For the downsampling, we find that the average-
pooling provide a better results compared with max-pooling
with comparison shown in the lower part in Table M1.
Therefore, ConvTranspose and average-pooling are used in
our experiments.

3. Supplementary Results
3.1. PnP-DIP vs. PnP-HSI

As shown in Table 1 in the main paper, the average result
of PnP-HSI [11] ([42] in the main paper) has an about 5dB
gap with the proposed PnP-DIP. The main reason causing
the less-than-perfect results of PnP-HSI is the simulation
setting. We used the real captured mask and a larger mask-
shift range (54 pixels). PnP-HSI is heavily dependent on
the initialization results of ADMM-TV, which is not good in
our simulation setting. The results of PnP-HSI usually can-
not converge well (generating artifacts) when using a bad
initialization. This is why we use HSI denoiser in only the
last few ADMM iterations. Our simulation setting is closer
to the real systems compared with [5], and our results in-
dicate that PnP-HSI is getting degraded when the shifting



Table M2. Average PSNR and SSIM of ADMM-TV, PnP-HSI and PnP-DIP on two datasets used in [11] under two different simulation
settings.

Dataset Simulation setting ADMM-TV PnP-HSI PnP-DIP
ICVL Binary mask, 30-pixel shift 32.56, 0.899 39.43, 0.974 40.72, 0.970

Real mask, 60-pixel shift 29.01, 0.867 32.91, 0.930 37.27, 0.954
KAIST Binary mask, 30-pixel shift 37.25, 0.957 39.15, 0.974 41.79, 0.974

Real mask, 60-pixel shift 34.25, 0.941 34.92, 0.954 38.74, 0.962

pixels are larger.
For verifying the analysis, we give the results of the

datasets used by [11] in Table M2 and Fig. M3. Specifically,
when the mask shifting is small, PnP-DIP and PnP-HSI are
providing similar results, but when the mask shifting is big,
our proposed PnP-DIP outperforms PnP-HSI by 4.36dB and
3.82dB, respectively on the two datasets, respectively.

This has also been verified by the real data results (Fig. 5
in the main paper and Fig. M4 in this SM) where a large
mask shifting was used.

Binary mask, 30-pixel shift Real mask, 60-pixel shift
PnP-DIPPnP-HSI PnP-DIPPnP-HSIData 1

Ground truth

Data 2

Figure M3. Result comparison of PnP-HSI and PnP-DIP on two
data from [11] under two different simulation settings.

ReferenceReference PnP-DIPPnP-HSI PnP-DIPPnP-HSI

Figure M4. Result comparison of PnP-HSI and PnP-DIP on en-
domicroscapy data in [6].

3.2. PnP-DIP vs. Autoencoder

We compare our proposed PnP-DIP with Autoen-
coder [2] on the datasets used in [11]. We use binary mask
in simulation, and the shift range is 30-pixel. Fig. M5 shows
the sRGB results of ADMM-TV [9], Autoencoder [2] and
our PnP-DIP. It can be seen that our method achieves much
better results. Autoencoder suffers from the spatial blur in
this single-disperser CASSI model, which is different from
the dual-disperser CASSI model mainly used in [2]. We
will put the results into the final paper.

Ours(PnP-DIP)AutoencoderGround truth

40.72, 0.970

41.79, 0.974

ADMM-TV

34.93, 0.95836.11, 0.940

33.24, 0.94132.70, 0.919PSNR, SSIM

PSNR, SSIM

Figure M5. Comparison (sRGB) of ADMM-TV [37], Autoen-
coder [6] and our PnP-DIP on two datasets used in [11].

3.3. Results on the Synthetic Data

Fig. M6-M15 show the reconstructed results of the syn-
thetic data with 10 out of 28 spectral channels. We com-
pare the proposed self-supervised method (PnP-DIP) and
the method using HSI prior (PnP-DIP-HSI) with the state
of the art supervised algorithm (TSA-Net [5]) and list the
corresponding PSNR and SSIM.

3.4. Results on the Real Data

CASSI Data Set 1 We show more results on the datasets
captured by the recently bulit CASSI system in [5]. The
2D measurements have a spatial size of 550× 604, and
the recovered spectral cube contains 28 spectral channels
with the size of 550× 550. The specific wavelengths are
{453.3, 457.6, 462.1, 466.8, 471.6, 476.5, 481.6, 486.9,
492.4, 498.0, 503.9, 509.9, 516.2, 522.7, 529.5, 536.5,
543.8, 551.4, 558.6, 567.5, 575.3, 584.3, 594.4, 604.2,
614.4, 625.1, 636.3, 648.1}nm. Fig. M16-M19 show the
reconstructed results of the 4 scenes with 10 out of 28 spec-
tral channels. We compare the proposed self-supervised
method (PnP-DIP) and the method using HSI prior (PnP-
DIP-HSI) with ADMM-TV and the supervised algorithm
TSA-Net [5].
CASSI Data Set 2 We show more results on the datasets
captured by the original CASSI system [4]. The recon-
structed spectral image contains 33 spectral channels with
the size of 210× 256. The specific wavelengths are {454,
458, 462, 465, 468, 472, 475, 479, 483, 487, 491, 496, 500,
505, 509, 514, 520, 525, 531, 537, 543, 549, 556, 564, 571,
579, 587, 596, 605, 615, 626, 637, 650}nm. Fig. M20



show the reconstructed results of the data Object with 10
out of 33 spectral channels. We compare the proposed self-
supervised method (PnP-DIP) and the method using HSI
prior (PnP-DIP-HSI) with Twist [1], ADMM-TV and the
deep PnP method (PnP-HSI) [11].
Endomicroscopy Data We show more results on the
datasets captured by the compressive multispectral endomi-
croscopy system [6].The captured measurements are of spa-
tial size of 660× 706, which are used to reconstruct the
multispectral endoscopic images with the size of 660×
660× 24. The specific wavelengths are {454.4, 459.5,
464.9, 470.5, 476.2, 482.1, 488.4, 494.8, 501.5, 508.5,
515.8, 523.4, 531.4, 539.7, 548.4, 557.5, 567.0, 577.0,
587.6, 598.7, 610.3, 622.6, 635.6, 649.3}nm. Fig. M21-
M26 show the reconstructed results of the 4 scenes with 10
out of 28 spectral channels. We compare the proposed self-
supervised method (PnP-DIP) and the method using HSI
prior (PnP-DIP-HSI) with TwIST and the supervised deep
neural network [6].
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Figure M6. The results of the synthetic data Scene 1 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M7. The results of the synthetic data Scene 2 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M8. The results of the synthetic data Scene 3 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M9. The results of the synthetic data Scene 4 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M10. The results of the synthetic data Scene 5 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M11. The results of the synthetic data Scene 6 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M12. The results of the synthetic data Scene 7 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M13. The results of the synthetic data Scene 8 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M14. The results of the synthetic data Scene 9 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M15. The results of the synthetic data Scene 10 with 10 spectral channels reconstructed by TSA-Net and the proposed PnP-DIP and
PnP-DIP-HSI.
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Figure M16. The results of the real data Lego plant with 10 spectral channels reconstructed by ADMM-TV, TSA-Net and the proposed
PnP-DIP and PnP-DIP-HSI.
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Figure M17. The results of the real data Strawberry with 10 spectral channels reconstructed by ADMM-TV, TSA-Net and the proposed
PnP-DIP and PnP-DIP-HSI.
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Figure M18. The results of the real data Plant with 10 spectral channels reconstructed by ADMM-TV, TSA-Net and the proposed PnP-DIP
and PnP-DIP-HSI.
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Figure M19. The results of the real data Lego man with 10 spectral channels reconstructed by ADMM-TV, TSA-Net and the proposed
PnP-DIP and PnP-DIP-HSI.
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Figure M20. The results of the real data Object with 10 spectral channels reconstructed by TwIST, ADMM-TV, deep PnP method (PnP-HSI)
and the proposed PnP-DIP and PnP-DIP-HSI.
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Figure M21. The results of the real data Resolution target with 10 spectral channels reconstructed by TwIST, a supervised deep neural
network and the proposed PnP-DIP and PnP-DIP-HSI.
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Figure M22. The results of the real data Dog olfactory membrane section 1 with 10 spectral channels reconstructed by TwIST, a supervised
deep neural network and the proposed PnP-DIP and PnP-DIP-HSI.
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Figure M23. The results of the real data Dog olfactory membrane section 2 with 10 spectral channels reconstructed by TwIST, a supervised
deep neural network and the proposed PnP-DIP and PnP-DIP-HSI.
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Figure M24. The results of the real data Fern root section with 10 spectral channels reconstructed by TwIST, a supervised deep neural
network and the proposed PnP-DIP and PnP-DIP-HSI.
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Figure M25. The results of the real data Red blood cell 1 with 10 spectral channels reconstructed by TwIST, a supervised deep neural
network and the proposed PnP-DIP and PnP-DIP-HSI.
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Figure M26. The results of the real data Red blood cell 2 with 10 spectral channels reconstructed by TwIST, a supervised deep neural
network and the proposed PnP-DIP and PnP-DIP-HSI.


