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Abstract

In this section, we provide details of transformations of
the image operations on datasets. We then further explain
the datasets and the architectures found in related experi-
ments. Finally, we look at the effect our method has on ac-
curacy within segmentation models and discuss the results
with provided samples of the generated images.

1. Details of the Effects of Image Operations on
Datasets

The overall number of image operations to create the
search space of policies is comprised of twenty operations
which include "FlipLR’, *FlipUD’, ’ AutoContrast’, "Equal-
ize’, ’Invert’, ’Sharpness’, ’Blur’, ’Smooth’, ’Rotate’,
"Posterize’, *CropBilinear’, *Solarize’, ’Color’, *Contrast’,
’Brightness’, ’ShearX’, ’ShearY’, ’TranslateX’, ’Trans-
lateY’, ’Cutout’. The range of magnitude is ten for ’Rotate’,
"Posterize’, ’CropBilinear’, *Solarize’, *Color’, *Contrast’,
’Brightness’, ’ShearX’, ’ShearY’, ’TranslateX’, ’Trans-
lateY’, *Cutout’. Note there are some transformations, such
as "FlipLR’, "FlipUD’, ’ AutoContrast’, ’Equalize’, *Invert’,
’Sharpness’, *Blur’, *Smooth’, that do not utilize a magni-
tude value. Figure [5] and Figure [6] show the outcomes of
applying image operations on CAR-T and Kaggle datasets.

2. Datasets

Kaggle Dataset It was first published by Booz Allen
Hamilton on Kaggle.com for the 2018 Data Science Bowl.
This dataset contains a large number of segmented nuclei
images (256x256). The images were acquired under a va-
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riety of conditions and vary in cell type, magnification, and
imaging modality (brightfield vs. fluorescence). In order
to ensure the consistency of the cell image background, we
have excluded a very small number of images with a spe-
cial background color. In the following experiments, we
used 320 images for training, 134 images for validation and
134 images for testing.

Car-T Dataset This dataset was collected by Rutgers
Cancer Institute of New Jersey. It contains 156 confocal
images (1024 x 1024) obtained by microscope system A1R
HD25 (Nikon, Japan), which provides a 25 mm field of
view. In the following experiments, we used 93 images for
training, 32 images for validation, and 31 images for test-

ing.

3. Architectures
3.1. Wasserstein Auto-Encoder

The Wasserstein Auto-Encoder(WAE) minimizes a pe-
nalized form of the Wasserstein distance between the model
distribution and the target distribution, which leads to a dif-
ferent regularizer than the one used within the Variational
Auto-Encoder (VAE). This regularizer encourages the en-
coded training distribution to match the prior [6]. We use
WAE to search the different policy combinations that yield
the least reconstruction loss.

3.2. KG Instance Segmentation

KG Instance Segmentation is a box-based cell instance
segmentation method. It first detects five pre-defined points
of a cell via keypoints detection and then groups these
points according to a keypoint graph that subsequently ex-



tracts the bounding box for each cell. Finally, cell segmen-
tation is performed on feature maps within the bounding
boxes [7]. This method is particularly effective for small
sample segmentation tasks, and its performance exceeds
DCAN, Mask R-CNN, and other methods.

4. Additional Experiment

For this experiment, we use data generated by our pro-
posed method to improve cell segmentation accuracy and
the robustness of model training results.

4.1. Setup

All of our experiments in supplementary are conducted
on RTX Titan NVIDIA graphic cards. As for the embedded
deep neural networks for our method, we used Pytorch [4].
For WAE [6]], we used the implementation in [5]] and for the
KG Instance Segmentation [[7] we used the implementation
by the author.

4.2. Data Preparation

Mixed Car-T Dataset We mixed the images generated by
our proposed method with the natural CAR-T images. The
training set contains 240 generated images combined with
93 natural images. The validation set contains 80 generated
images and 32 natural images.

Original Car-T Dataset This dataset has been introduced
in the previous section and is used as a reference for the
experiments.

4.3. Evaluation

In order to verify the effect of our method on real data,
the training results of the two datasets (Mixed Car-T Dataset
and Original Car-T Dataset) are both evaluated on the real
CAR-T test set.

Evaluation Metrics We use the average precision (AP)
at box-level IOU (intersection over union) [1]] at thresholds
between 0.5 to 0.8 to evaluate the bounding box detection
performances. We use the AP at mask-level IOU [2, 3] at
thresholds between 0.5 to 0.8 to evaluate the instance seg-
mentation performances. We also report the mean mask-
level IOU [8] between the predicted segmentation masks
and the ground truth masks at thresholds between 0.5 to 0.8.

4.4. Results and Discussion

As shown in Table[T]and Table 2] for the BBox detection
performances, the training results of the mixed dataset is
at least 0.65 % and at most 4.02% better than the results
of the real dataset on the AP. For semantic segmentation,
the results of the mixed dataset is at least 0.39 % and up
to 2.86% higher than results of the real data on AP. It also

shows improvement of at least 0.65% and up to 1.18% when
compared to the reference dataset at IOUs.

The results show that the method could easily improve
the accuracy of object detection and semantic segmentation
of cells. The reason is that augmentation generates a lot of
new data that benefits the generalization of the training pro-
cess, which reduces overfitting and improves the robustness
of the model. In these experiments, we adopted a conser-
vative approach and only generated 240 artificial images.
The effects of the size of datasets need further investiga-
tion. More importantly, adopting different strategies to se-
lect augmentation policies and their effects on the training
process also needs further investigation. We will conduct
in-depth research in the future to explore the impact of data
augmentation within model training.

5. Generated image samples

In the end, we generate additional image samples at
higher resolutions.
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BBox Evaluation AP@(0.5 AP@0.6 AP@0.7 AP@0.8

Mixed Car-T Dataset 77.35 71.13 63.97 45.35
Original Car-T Dataset  76.35 70.48 59.95 42.79

Table 1: The evaluation accuracy (%) for object detection/bounding box generation.

Sementic Evaluation AP@(0.5 I0OU@0.5 AP@0.6 I0U@0.6 AP@0.7 I0U@0.7 AP@0.8 I0U@0.8

Mixed Car-T Dataset 78.26 81.60 72.02 83.45 63.04 85.53 46.28 88.28
Original Car-T Dataset 77.64 80.44 71.63 82.27 60.46 84.73 43.42 87.63

Table 2: The evaluation accuracy (%) for semantic segmentation.

Figure 1: A sample of an artificially generated CAR-T dataset (first row) with its respective semantically segmented image
(second row). In four different locations, the zoom-in functionality is used to provide better details of the generated cells and
their respective masks.
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Figure 2: A real sample from the CAR-T dataset (first row) with its respective semantically segmented image (second row).
In four different locations, the zoom-in functionality is used to provide better details of the real cells and their respective
masks.



Figure 3: A sample of an artificially generated Kaggle dataset (first row) with its respective semantically segmented image
(second row). In four different locations, the zoom-in functionality is used to provide better details of the generated cells and
their respective masks.

Figure 4: A real sample from the Kaggle dataset (first row) with its respective semantically segmented image (second row).
In four different locations, the zoom-in functionality is used to provide better details of the real cells and their respective
masks.
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Figure 5: A sample using different forms of augmentation techniques on the cells. Each row represents a new
augmentation technique applied on a multi-cell within the CAR-T dataset. The augmentations used in the or-
der of rows are: ’Rotate’,’Posterize’,’ CropBilinear’,’Solarize’,’Color’,’ Contrast’,’ Brightness’,’ShearX’,’ShearY’, *Transla-
teX’, TranslateY’,’Cutout’,’ Equalize’, Invert’,” AutoContrast’.
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Figure 6: A sample using different forms of augmentation techniques on the cells. Each row represents a new
augmentation technique applied on a multi-cell within the Kaggle dataset. The augmentations used in the or-
der of rows are: ’Rotate’,’Posterize’,’ CropBilinear’,’Solarize’,’Color’,’ Contrast’,’ Brightness’,’ShearX’,’ShearY’, *Transla-
teX’, TranslateY’,’Cutout’,’ Equalize’, Invert’,” AutoContrast’.




Figure 7: A sample of the final images created from the proposed method (128 x 128 for each sample) using the CAR-T
dataset.




Figure 8: A sample of the final images created from the proposed method (128 x 128 for each sample) using the Kaggle
dataset.




Figure 9: A sample of the final images created from the BigGAN-Diff method (128 x 128 for each sample) using the CA
dataset.




Figure 10: A sample of the final images created from the BigGAN-Diff method (128 x 128 for each sample) using the Kaggle
dataset.




Figure 11: A sample of the final images created from the StyleGAN2-Diff method (128 x 128 for each sample) using the
CAR-T dataset.




Figure 12: A sample of the final images created from the StyleGAN2-Diff method (128 x 128 for each sample) using the
Kaggle dataset.




Figure 13: A sample of the final images created from the real images (128 x 128 for each sample) using the CAR-T dataset.




Figure 14: A sample of the final images created from the real images (128 x 128 for each sample) using the Kaggle dataset.
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